Metamath Proof Explorer


Theorem nn0sumltlt

Description: If the sum of two nonnegative integers is less than a third integer, then one of the summands is already less than this third integer. (Contributed by AV, 19-Oct-2019)

Ref Expression
Assertion nn0sumltlt a0b0c0a+b<cb<c

Proof

Step Hyp Ref Expression
1 nn0re a0a
2 nn0re b0b
3 nn0re c0c
4 ltaddsub2 abca+b<cb<ca
5 1 2 3 4 syl3an a0b0c0a+b<cb<ca
6 nn0ge0 a00a
7 6 3ad2ant1 a0b0c00a
8 1 3 anim12ci a0c0ca
9 8 3adant2 a0b0c0ca
10 subge02 ca0acac
11 10 bicomd cacac0a
12 9 11 syl a0b0c0cac0a
13 7 12 mpbird a0b0c0cac
14 2 3ad2ant2 a0b0c0b
15 nn0resubcl c0a0ca
16 15 ancoms a0c0ca
17 16 3adant2 a0b0c0ca
18 3 3ad2ant3 a0b0c0c
19 ltletr bcacb<cacacb<c
20 14 17 18 19 syl3anc a0b0c0b<cacacb<c
21 13 20 mpan2d a0b0c0b<cab<c
22 5 21 sylbid a0b0c0a+b<cb<c