| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq1 |  | 
						
							| 2 |  | oveq2 |  | 
						
							| 3 | 1 2 | eqeq12d |  | 
						
							| 4 | 3 | imbi2d |  | 
						
							| 5 |  | oveq1 |  | 
						
							| 6 |  | oveq2 |  | 
						
							| 7 | 5 6 | eqeq12d |  | 
						
							| 8 | 7 | imbi2d |  | 
						
							| 9 |  | oveq1 |  | 
						
							| 10 |  | oveq2 |  | 
						
							| 11 | 9 10 | eqeq12d |  | 
						
							| 12 | 11 | imbi2d |  | 
						
							| 13 |  | oveq1 |  | 
						
							| 14 |  | oveq2 |  | 
						
							| 15 | 13 14 | eqeq12d |  | 
						
							| 16 | 15 | imbi2d |  | 
						
							| 17 |  | nnadd1com |  | 
						
							| 18 | 17 | eqcomd |  | 
						
							| 19 |  | oveq1 |  | 
						
							| 20 | 17 | oveq2d |  | 
						
							| 21 | 20 | adantl |  | 
						
							| 22 |  | nncn |  | 
						
							| 23 | 22 | adantr |  | 
						
							| 24 |  | nncn |  | 
						
							| 25 | 24 | adantl |  | 
						
							| 26 |  | 1cnd |  | 
						
							| 27 | 23 25 26 | addassd |  | 
						
							| 28 | 23 26 25 | addassd |  | 
						
							| 29 | 21 27 28 | 3eqtr4d |  | 
						
							| 30 | 25 23 26 | addassd |  | 
						
							| 31 | 29 30 | eqeq12d |  | 
						
							| 32 | 19 31 | imbitrid |  | 
						
							| 33 | 32 | ex |  | 
						
							| 34 | 33 | a2d |  | 
						
							| 35 | 4 8 12 16 18 34 | nnind |  | 
						
							| 36 | 35 | imp |  |