Description: Addition is commutative for natural numbers. Uses fewer axioms than addcom . (Contributed by Steven Nguyen, 9-Dec-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | nnaddcom | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 | |
|
2 | oveq2 | |
|
3 | 1 2 | eqeq12d | |
4 | 3 | imbi2d | |
5 | oveq1 | |
|
6 | oveq2 | |
|
7 | 5 6 | eqeq12d | |
8 | 7 | imbi2d | |
9 | oveq1 | |
|
10 | oveq2 | |
|
11 | 9 10 | eqeq12d | |
12 | 11 | imbi2d | |
13 | oveq1 | |
|
14 | oveq2 | |
|
15 | 13 14 | eqeq12d | |
16 | 15 | imbi2d | |
17 | nnadd1com | |
|
18 | 17 | eqcomd | |
19 | oveq1 | |
|
20 | 17 | oveq2d | |
21 | 20 | adantl | |
22 | nncn | |
|
23 | 22 | adantr | |
24 | nncn | |
|
25 | 24 | adantl | |
26 | 1cnd | |
|
27 | 23 25 26 | addassd | |
28 | 23 26 25 | addassd | |
29 | 21 27 28 | 3eqtr4d | |
30 | 25 23 26 | addassd | |
31 | 29 30 | eqeq12d | |
32 | 19 31 | imbitrid | |
33 | 32 | ex | |
34 | 33 | a2d | |
35 | 4 8 12 16 18 34 | nnind | |
36 | 35 | imp | |