Metamath Proof Explorer


Theorem nnaddcom

Description: Addition is commutative for natural numbers. Uses fewer axioms than addcom . (Contributed by Steven Nguyen, 9-Dec-2022)

Ref Expression
Assertion nnaddcom ABA+B=B+A

Proof

Step Hyp Ref Expression
1 oveq1 x=1x+B=1+B
2 oveq2 x=1B+x=B+1
3 1 2 eqeq12d x=1x+B=B+x1+B=B+1
4 3 imbi2d x=1Bx+B=B+xB1+B=B+1
5 oveq1 x=yx+B=y+B
6 oveq2 x=yB+x=B+y
7 5 6 eqeq12d x=yx+B=B+xy+B=B+y
8 7 imbi2d x=yBx+B=B+xBy+B=B+y
9 oveq1 x=y+1x+B=y+1+B
10 oveq2 x=y+1B+x=B+y+1
11 9 10 eqeq12d x=y+1x+B=B+xy+1+B=B+y+1
12 11 imbi2d x=y+1Bx+B=B+xBy+1+B=B+y+1
13 oveq1 x=Ax+B=A+B
14 oveq2 x=AB+x=B+A
15 13 14 eqeq12d x=Ax+B=B+xA+B=B+A
16 15 imbi2d x=ABx+B=B+xBA+B=B+A
17 nnadd1com BB+1=1+B
18 17 eqcomd B1+B=B+1
19 oveq1 y+B=B+yy+B+1=B+y+1
20 17 oveq2d By+B+1=y+1+B
21 20 adantl yBy+B+1=y+1+B
22 nncn yy
23 22 adantr yBy
24 nncn BB
25 24 adantl yBB
26 1cnd yB1
27 23 25 26 addassd yBy+B+1=y+B+1
28 23 26 25 addassd yBy+1+B=y+1+B
29 21 27 28 3eqtr4d yBy+B+1=y+1+B
30 25 23 26 addassd yBB+y+1=B+y+1
31 29 30 eqeq12d yBy+B+1=B+y+1y+1+B=B+y+1
32 19 31 imbitrid yBy+B=B+yy+1+B=B+y+1
33 32 ex yBy+B=B+yy+1+B=B+y+1
34 33 a2d yBy+B=B+yBy+1+B=B+y+1
35 4 8 12 16 18 34 nnind ABA+B=B+A
36 35 imp ABA+B=B+A