Metamath Proof Explorer


Theorem nnmordi

Description: Ordering property of multiplication. Half of Proposition 8.19 of TakeutiZaring p. 63, limited to natural numbers. (Contributed by NM, 18-Sep-1995) (Revised by Mario Carneiro, 15-Nov-2014)

Ref Expression
Assertion nnmordi BωCωCABC𝑜AC𝑜B

Proof

Step Hyp Ref Expression
1 elnn ABBωAω
2 1 expcom BωABAω
3 eleq2 x=BAxAB
4 oveq2 x=BC𝑜x=C𝑜B
5 4 eleq2d x=BC𝑜AC𝑜xC𝑜AC𝑜B
6 3 5 imbi12d x=BAxC𝑜AC𝑜xABC𝑜AC𝑜B
7 6 imbi2d x=BAωCωCAxC𝑜AC𝑜xAωCωCABC𝑜AC𝑜B
8 eleq2 x=AxA
9 oveq2 x=C𝑜x=C𝑜
10 9 eleq2d x=C𝑜AC𝑜xC𝑜AC𝑜
11 8 10 imbi12d x=AxC𝑜AC𝑜xAC𝑜AC𝑜
12 eleq2 x=yAxAy
13 oveq2 x=yC𝑜x=C𝑜y
14 13 eleq2d x=yC𝑜AC𝑜xC𝑜AC𝑜y
15 12 14 imbi12d x=yAxC𝑜AC𝑜xAyC𝑜AC𝑜y
16 eleq2 x=sucyAxAsucy
17 oveq2 x=sucyC𝑜x=C𝑜sucy
18 17 eleq2d x=sucyC𝑜AC𝑜xC𝑜AC𝑜sucy
19 16 18 imbi12d x=sucyAxC𝑜AC𝑜xAsucyC𝑜AC𝑜sucy
20 noel ¬A
21 20 pm2.21i AC𝑜AC𝑜
22 21 a1i AωCωCAC𝑜AC𝑜
23 elsuci AsucyAyA=y
24 nnmcl CωyωC𝑜yω
25 simpl CωyωCω
26 24 25 jca CωyωC𝑜yωCω
27 nnaword1 C𝑜yωCωC𝑜yC𝑜y+𝑜C
28 27 sseld C𝑜yωCωC𝑜AC𝑜yC𝑜AC𝑜y+𝑜C
29 28 imim2d C𝑜yωCωAyC𝑜AC𝑜yAyC𝑜AC𝑜y+𝑜C
30 29 imp C𝑜yωCωAyC𝑜AC𝑜yAyC𝑜AC𝑜y+𝑜C
31 30 adantrl C𝑜yωCωCAyC𝑜AC𝑜yAyC𝑜AC𝑜y+𝑜C
32 nna0 C𝑜yωC𝑜y+𝑜=C𝑜y
33 32 ad2antrr C𝑜yωCωCC𝑜y+𝑜=C𝑜y
34 nnaordi CωC𝑜yωCC𝑜y+𝑜C𝑜y+𝑜C
35 34 ancoms C𝑜yωCωCC𝑜y+𝑜C𝑜y+𝑜C
36 35 imp C𝑜yωCωCC𝑜y+𝑜C𝑜y+𝑜C
37 33 36 eqeltrrd C𝑜yωCωCC𝑜yC𝑜y+𝑜C
38 oveq2 A=yC𝑜A=C𝑜y
39 38 eleq1d A=yC𝑜AC𝑜y+𝑜CC𝑜yC𝑜y+𝑜C
40 37 39 syl5ibrcom C𝑜yωCωCA=yC𝑜AC𝑜y+𝑜C
41 40 adantrr C𝑜yωCωCAyC𝑜AC𝑜yA=yC𝑜AC𝑜y+𝑜C
42 31 41 jaod C𝑜yωCωCAyC𝑜AC𝑜yAyA=yC𝑜AC𝑜y+𝑜C
43 26 42 sylan CωyωCAyC𝑜AC𝑜yAyA=yC𝑜AC𝑜y+𝑜C
44 23 43 syl5 CωyωCAyC𝑜AC𝑜yAsucyC𝑜AC𝑜y+𝑜C
45 nnmsuc CωyωC𝑜sucy=C𝑜y+𝑜C
46 45 eleq2d CωyωC𝑜AC𝑜sucyC𝑜AC𝑜y+𝑜C
47 46 adantr CωyωCAyC𝑜AC𝑜yC𝑜AC𝑜sucyC𝑜AC𝑜y+𝑜C
48 44 47 sylibrd CωyωCAyC𝑜AC𝑜yAsucyC𝑜AC𝑜sucy
49 48 exp43 CωyωCAyC𝑜AC𝑜yAsucyC𝑜AC𝑜sucy
50 49 com12 yωCωCAyC𝑜AC𝑜yAsucyC𝑜AC𝑜sucy
51 50 adantld yωAωCωCAyC𝑜AC𝑜yAsucyC𝑜AC𝑜sucy
52 51 impd yωAωCωCAyC𝑜AC𝑜yAsucyC𝑜AC𝑜sucy
53 11 15 19 22 52 finds2 xωAωCωCAxC𝑜AC𝑜x
54 7 53 vtoclga BωAωCωCABC𝑜AC𝑜B
55 54 com23 BωABAωCωCC𝑜AC𝑜B
56 55 exp4a BωABAωCωCC𝑜AC𝑜B
57 56 exp4a BωABAωCωCC𝑜AC𝑜B
58 2 57 mpdd BωABCωCC𝑜AC𝑜B
59 58 com34 BωABCCωC𝑜AC𝑜B
60 59 com24 BωCωCABC𝑜AC𝑜B
61 60 imp31 BωCωCABC𝑜AC𝑜B