Metamath Proof Explorer


Theorem nnmulcom

Description: Multiplication is commutative for natural numbers. (Contributed by SN, 5-Feb-2024)

Ref Expression
Assertion nnmulcom ABAB=BA

Proof

Step Hyp Ref Expression
1 oveq1 x=1xB=1B
2 oveq2 x=1Bx=B1
3 1 2 eqeq12d x=1xB=Bx1B=B1
4 3 imbi2d x=1BxB=BxB1B=B1
5 oveq1 x=yxB=yB
6 oveq2 x=yBx=By
7 5 6 eqeq12d x=yxB=BxyB=By
8 7 imbi2d x=yBxB=BxByB=By
9 oveq1 x=y+1xB=y+1B
10 oveq2 x=y+1Bx=By+1
11 9 10 eqeq12d x=y+1xB=Bxy+1B=By+1
12 11 imbi2d x=y+1BxB=BxBy+1B=By+1
13 oveq1 x=AxB=AB
14 oveq2 x=ABx=BA
15 13 14 eqeq12d x=AxB=BxAB=BA
16 15 imbi2d x=ABxB=BxBAB=BA
17 nnmul1com B1B=B1
18 simp3 yByB=ByyB=By
19 17 3ad2ant2 yByB=By1B=B1
20 18 19 oveq12d yByB=ByyB+1B=By+B1
21 simp1 yByB=Byy
22 1nn 1
23 22 a1i yByB=By1
24 simp2 yByB=ByB
25 nnadddir y1By+1B=yB+1B
26 21 23 24 25 syl3anc yByB=Byy+1B=yB+1B
27 24 nncnd yByB=ByB
28 21 nncnd yByB=Byy
29 1cnd yByB=By1
30 27 28 29 adddid yByB=ByBy+1=By+B1
31 20 26 30 3eqtr4d yByB=Byy+1B=By+1
32 31 3exp yByB=Byy+1B=By+1
33 32 a2d yByB=ByBy+1B=By+1
34 4 8 12 16 17 33 nnind ABAB=BA
35 34 imp ABAB=BA