| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq1 |
|
| 2 |
|
oveq2 |
|
| 3 |
1 2
|
eqeq12d |
|
| 4 |
3
|
imbi2d |
|
| 5 |
|
oveq1 |
|
| 6 |
|
oveq2 |
|
| 7 |
5 6
|
eqeq12d |
|
| 8 |
7
|
imbi2d |
|
| 9 |
|
oveq1 |
|
| 10 |
|
oveq2 |
|
| 11 |
9 10
|
eqeq12d |
|
| 12 |
11
|
imbi2d |
|
| 13 |
|
oveq1 |
|
| 14 |
|
oveq2 |
|
| 15 |
13 14
|
eqeq12d |
|
| 16 |
15
|
imbi2d |
|
| 17 |
|
nnmul1com |
|
| 18 |
|
simp3 |
|
| 19 |
17
|
3ad2ant2 |
|
| 20 |
18 19
|
oveq12d |
|
| 21 |
|
simp1 |
|
| 22 |
|
1nn |
|
| 23 |
22
|
a1i |
|
| 24 |
|
simp2 |
|
| 25 |
|
nnadddir |
|
| 26 |
21 23 24 25
|
syl3anc |
|
| 27 |
24
|
nncnd |
|
| 28 |
21
|
nncnd |
|
| 29 |
|
1cnd |
|
| 30 |
27 28 29
|
adddid |
|
| 31 |
20 26 30
|
3eqtr4d |
|
| 32 |
31
|
3exp |
|
| 33 |
32
|
a2d |
|
| 34 |
4 8 12 16 17 33
|
nnind |
|
| 35 |
34
|
imp |
|