Description: Multiplication is commutative for natural numbers. (Contributed by SN, 5-Feb-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | nnmulcom | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 | |
|
2 | oveq2 | |
|
3 | 1 2 | eqeq12d | |
4 | 3 | imbi2d | |
5 | oveq1 | |
|
6 | oveq2 | |
|
7 | 5 6 | eqeq12d | |
8 | 7 | imbi2d | |
9 | oveq1 | |
|
10 | oveq2 | |
|
11 | 9 10 | eqeq12d | |
12 | 11 | imbi2d | |
13 | oveq1 | |
|
14 | oveq2 | |
|
15 | 13 14 | eqeq12d | |
16 | 15 | imbi2d | |
17 | nnmul1com | |
|
18 | simp3 | |
|
19 | 17 | 3ad2ant2 | |
20 | 18 19 | oveq12d | |
21 | simp1 | |
|
22 | 1nn | |
|
23 | 22 | a1i | |
24 | simp2 | |
|
25 | nnadddir | |
|
26 | 21 23 24 25 | syl3anc | |
27 | 24 | nncnd | |
28 | 21 | nncnd | |
29 | 1cnd | |
|
30 | 27 28 29 | adddid | |
31 | 20 26 30 | 3eqtr4d | |
32 | 31 | 3exp | |
33 | 32 | a2d | |
34 | 4 8 12 16 17 33 | nnind | |
35 | 34 | imp | |