Description: A product of natural numbers divides a natural number if and only if a factor divides the quotient, a deduction version. (Contributed by metakunt, 12-May-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | nnproddivdvdsd.1 | |
|
nnproddivdvdsd.2 | |
||
nnproddivdvdsd.3 | |
||
Assertion | nnproddivdvdsd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnproddivdvdsd.1 | |
|
2 | nnproddivdvdsd.2 | |
|
3 | nnproddivdvdsd.3 | |
|
4 | 3 | nncnd | |
5 | 4 | adantr | |
6 | 1 | nncnd | |
7 | 6 | adantr | |
8 | 2 | nncnd | |
9 | 8 | adantr | |
10 | 1 | adantr | |
11 | nnne0 | |
|
12 | 10 11 | syl | |
13 | 2 | adantr | |
14 | 13 | nnne0d | |
15 | 5 7 9 12 14 | divdiv1d | |
16 | 15 | eqcomd | |
17 | 5 7 9 12 14 | divdiv32d | |
18 | 16 17 | eqtrd | |
19 | 1 2 | nnmulcld | |
20 | 19 3 | nndivdvdsd | |
21 | 20 | biimpd | |
22 | 21 | imp | |
23 | 18 22 | eqeltrrd | |
24 | 1 | nnzd | |
25 | 2 | nnzd | |
26 | 3 | nnzd | |
27 | 24 25 26 | 3jca | |
28 | muldvds2 | |
|
29 | 27 28 | syl | |
30 | 29 | imp | |
31 | 3 | adantr | |
32 | 13 31 | nndivdvdsd | |
33 | 30 32 | mpbid | |
34 | 10 33 | nndivdvdsd | |
35 | 23 34 | mpbird | |
36 | 35 | ex | |
37 | dvdszrcl | |
|
38 | 37 | simprd | |
39 | 38 | adantl | |
40 | dvdsmulc | |
|
41 | 24 40 | syl3an1 | |
42 | 25 41 | syl3an3 | |
43 | 42 | 3anidm13 | |
44 | 43 | impancom | |
45 | 39 44 | mpd | |
46 | 2 | nnne0d | |
47 | 4 8 46 | divcan1d | |
48 | 47 | adantr | |
49 | 45 48 | breqtrd | |
50 | 49 | ex | |
51 | 36 50 | impbid | |