Metamath Proof Explorer


Theorem nnproddivdvdsd

Description: A product of natural numbers divides a natural number if and only if a factor divides the quotient, a deduction version. (Contributed by metakunt, 12-May-2024)

Ref Expression
Hypotheses nnproddivdvdsd.1 φK
nnproddivdvdsd.2 φM
nnproddivdvdsd.3 φN
Assertion nnproddivdvdsd φK MNKNM

Proof

Step Hyp Ref Expression
1 nnproddivdvdsd.1 φK
2 nnproddivdvdsd.2 φM
3 nnproddivdvdsd.3 φN
4 3 nncnd φN
5 4 adantr φK MNN
6 1 nncnd φK
7 6 adantr φK MNK
8 2 nncnd φM
9 8 adantr φK MNM
10 1 adantr φK MNK
11 nnne0 KK0
12 10 11 syl φK MNK0
13 2 adantr φK MNM
14 13 nnne0d φK MNM0
15 5 7 9 12 14 divdiv1d φK MNNKM=NK M
16 15 eqcomd φK MNNK M=NKM
17 5 7 9 12 14 divdiv32d φK MNNKM=NMK
18 16 17 eqtrd φK MNNK M=NMK
19 1 2 nnmulcld φK M
20 19 3 nndivdvdsd φK MNNK M
21 20 biimpd φK MNNK M
22 21 imp φK MNNK M
23 18 22 eqeltrrd φK MNNMK
24 1 nnzd φK
25 2 nnzd φM
26 3 nnzd φN
27 24 25 26 3jca φKMN
28 muldvds2 KMNK MNMN
29 27 28 syl φK MNMN
30 29 imp φK MNMN
31 3 adantr φK MNN
32 13 31 nndivdvdsd φK MNMNNM
33 30 32 mpbid φK MNNM
34 10 33 nndivdvdsd φK MNKNMNMK
35 23 34 mpbird φK MNKNM
36 35 ex φK MNKNM
37 dvdszrcl KNMKNM
38 37 simprd KNMNM
39 38 adantl φKNMNM
40 dvdsmulc KNMMKNMK MNM M
41 24 40 syl3an1 φNMMKNMK MNM M
42 25 41 syl3an3 φNMφKNMK MNM M
43 42 3anidm13 φNMKNMK MNM M
44 43 impancom φKNMNMK MNM M
45 39 44 mpd φKNMK MNM M
46 2 nnne0d φM0
47 4 8 46 divcan1d φNM M=N
48 47 adantr φKNMNM M=N
49 45 48 breqtrd φKNMK MN
50 49 ex φKNMK MN
51 36 50 impbid φK MNKNM