Metamath Proof Explorer


Theorem noextendgt

Description: Extending a surreal with a positive sign results in a bigger surreal. (Contributed by Scott Fenton, 22-Nov-2021)

Ref Expression
Assertion noextendgt ANoA<sAdomA2𝑜

Proof

Step Hyp Ref Expression
1 nodmord ANoOrddomA
2 ordirr OrddomA¬domAdomA
3 1 2 syl ANo¬domAdomA
4 ndmfv ¬domAdomAAdomA=
5 3 4 syl ANoAdomA=
6 nofun ANoFunA
7 funfn FunAAFndomA
8 6 7 sylib ANoAFndomA
9 nodmon ANodomAOn
10 2on 2𝑜On
11 fnsng domAOn2𝑜OndomA2𝑜FndomA
12 9 10 11 sylancl ANodomA2𝑜FndomA
13 disjsn domAdomA=¬domAdomA
14 3 13 sylibr ANodomAdomA=
15 snidg domAOndomAdomA
16 9 15 syl ANodomAdomA
17 fvun2 AFndomAdomA2𝑜FndomAdomAdomA=domAdomAAdomA2𝑜domA=domA2𝑜domA
18 8 12 14 16 17 syl112anc ANoAdomA2𝑜domA=domA2𝑜domA
19 fvsng domAOn2𝑜OndomA2𝑜domA=2𝑜
20 9 10 19 sylancl ANodomA2𝑜domA=2𝑜
21 18 20 eqtrd ANoAdomA2𝑜domA=2𝑜
22 5 21 jca ANoAdomA=AdomA2𝑜domA=2𝑜
23 22 3mix3d ANoAdomA=1𝑜AdomA2𝑜domA=AdomA=1𝑜AdomA2𝑜domA=2𝑜AdomA=AdomA2𝑜domA=2𝑜
24 fvex AdomAV
25 fvex AdomA2𝑜domAV
26 24 25 brtp AdomA1𝑜1𝑜2𝑜2𝑜AdomA2𝑜domAAdomA=1𝑜AdomA2𝑜domA=AdomA=1𝑜AdomA2𝑜domA=2𝑜AdomA=AdomA2𝑜domA=2𝑜
27 23 26 sylibr ANoAdomA1𝑜1𝑜2𝑜2𝑜AdomA2𝑜domA
28 10 elexi 2𝑜V
29 28 prid2 2𝑜1𝑜2𝑜
30 29 noextenddif ANoxOn|AxAdomA2𝑜x=domA
31 30 fveq2d ANoAxOn|AxAdomA2𝑜x=AdomA
32 30 fveq2d ANoAdomA2𝑜xOn|AxAdomA2𝑜x=AdomA2𝑜domA
33 27 31 32 3brtr4d ANoAxOn|AxAdomA2𝑜x1𝑜1𝑜2𝑜2𝑜AdomA2𝑜xOn|AxAdomA2𝑜x
34 29 noextend ANoAdomA2𝑜No
35 sltval2 ANoAdomA2𝑜NoA<sAdomA2𝑜AxOn|AxAdomA2𝑜x1𝑜1𝑜2𝑜2𝑜AdomA2𝑜xOn|AxAdomA2𝑜x
36 34 35 mpdan ANoA<sAdomA2𝑜AxOn|AxAdomA2𝑜x1𝑜1𝑜2𝑜2𝑜AdomA2𝑜xOn|AxAdomA2𝑜x
37 33 36 mpbird ANoA<sAdomA2𝑜