Metamath Proof Explorer


Theorem noextendlt

Description: Extending a surreal with a negative sign results in a smaller surreal. (Contributed by Scott Fenton, 22-Nov-2021)

Ref Expression
Assertion noextendlt ANoAdomA1𝑜<sA

Proof

Step Hyp Ref Expression
1 nofun ANoFunA
2 funfn FunAAFndomA
3 1 2 sylib ANoAFndomA
4 nodmon ANodomAOn
5 1on 1𝑜On
6 fnsng domAOn1𝑜OndomA1𝑜FndomA
7 4 5 6 sylancl ANodomA1𝑜FndomA
8 nodmord ANoOrddomA
9 ordirr OrddomA¬domAdomA
10 8 9 syl ANo¬domAdomA
11 disjsn domAdomA=¬domAdomA
12 10 11 sylibr ANodomAdomA=
13 snidg domAOndomAdomA
14 4 13 syl ANodomAdomA
15 fvun2 AFndomAdomA1𝑜FndomAdomAdomA=domAdomAAdomA1𝑜domA=domA1𝑜domA
16 3 7 12 14 15 syl112anc ANoAdomA1𝑜domA=domA1𝑜domA
17 fvsng domAOn1𝑜OndomA1𝑜domA=1𝑜
18 4 5 17 sylancl ANodomA1𝑜domA=1𝑜
19 16 18 eqtrd ANoAdomA1𝑜domA=1𝑜
20 ndmfv ¬domAdomAAdomA=
21 10 20 syl ANoAdomA=
22 19 21 jca ANoAdomA1𝑜domA=1𝑜AdomA=
23 22 3mix1d ANoAdomA1𝑜domA=1𝑜AdomA=AdomA1𝑜domA=1𝑜AdomA=2𝑜AdomA1𝑜domA=AdomA=2𝑜
24 fvex AdomA1𝑜domAV
25 fvex AdomAV
26 24 25 brtp AdomA1𝑜domA1𝑜1𝑜2𝑜2𝑜AdomAAdomA1𝑜domA=1𝑜AdomA=AdomA1𝑜domA=1𝑜AdomA=2𝑜AdomA1𝑜domA=AdomA=2𝑜
27 23 26 sylibr ANoAdomA1𝑜domA1𝑜1𝑜2𝑜2𝑜AdomA
28 necom AdomA1𝑜xAxAxAdomA1𝑜x
29 28 rabbii xOn|AdomA1𝑜xAx=xOn|AxAdomA1𝑜x
30 29 inteqi xOn|AdomA1𝑜xAx=xOn|AxAdomA1𝑜x
31 1oex 1𝑜V
32 31 prid1 1𝑜1𝑜2𝑜
33 32 noextenddif ANoxOn|AxAdomA1𝑜x=domA
34 30 33 eqtrid ANoxOn|AdomA1𝑜xAx=domA
35 34 fveq2d ANoAdomA1𝑜xOn|AdomA1𝑜xAx=AdomA1𝑜domA
36 34 fveq2d ANoAxOn|AdomA1𝑜xAx=AdomA
37 27 35 36 3brtr4d ANoAdomA1𝑜xOn|AdomA1𝑜xAx1𝑜1𝑜2𝑜2𝑜AxOn|AdomA1𝑜xAx
38 32 noextend ANoAdomA1𝑜No
39 sltval2 AdomA1𝑜NoANoAdomA1𝑜<sAAdomA1𝑜xOn|AdomA1𝑜xAx1𝑜1𝑜2𝑜2𝑜AxOn|AdomA1𝑜xAx
40 38 39 mpancom ANoAdomA1𝑜<sAAdomA1𝑜xOn|AdomA1𝑜xAx1𝑜1𝑜2𝑜2𝑜AxOn|AdomA1𝑜xAx
41 37 40 mpbird ANoAdomA1𝑜<sA