Metamath Proof Explorer


Theorem nrgdsdir

Description: Distribute a distance calculation. (Contributed by Mario Carneiro, 5-Oct-2015)

Ref Expression
Hypotheses nmmul.x X=BaseR
nmmul.n N=normR
nmmul.t ·˙=R
nrgdsdi.d D=distR
Assertion nrgdsdir RNrmRingAXBXCXADBNC=A·˙CDB·˙C

Proof

Step Hyp Ref Expression
1 nmmul.x X=BaseR
2 nmmul.n N=normR
3 nmmul.t ·˙=R
4 nrgdsdi.d D=distR
5 simpl RNrmRingAXBXCXRNrmRing
6 nrgring RNrmRingRRing
7 6 adantr RNrmRingAXBXCXRRing
8 ringgrp RRingRGrp
9 7 8 syl RNrmRingAXBXCXRGrp
10 simpr1 RNrmRingAXBXCXAX
11 simpr2 RNrmRingAXBXCXBX
12 eqid -R=-R
13 1 12 grpsubcl RGrpAXBXA-RBX
14 9 10 11 13 syl3anc RNrmRingAXBXCXA-RBX
15 simpr3 RNrmRingAXBXCXCX
16 1 2 3 nmmul RNrmRingA-RBXCXNA-RB·˙C=NA-RBNC
17 5 14 15 16 syl3anc RNrmRingAXBXCXNA-RB·˙C=NA-RBNC
18 1 3 12 7 10 11 15 ringsubdir RNrmRingAXBXCXA-RB·˙C=A·˙C-RB·˙C
19 18 fveq2d RNrmRingAXBXCXNA-RB·˙C=NA·˙C-RB·˙C
20 17 19 eqtr3d RNrmRingAXBXCXNA-RBNC=NA·˙C-RB·˙C
21 nrgngp RNrmRingRNrmGrp
22 21 adantr RNrmRingAXBXCXRNrmGrp
23 2 1 12 4 ngpds RNrmGrpAXBXADB=NA-RB
24 22 10 11 23 syl3anc RNrmRingAXBXCXADB=NA-RB
25 24 oveq1d RNrmRingAXBXCXADBNC=NA-RBNC
26 1 3 ringcl RRingAXCXA·˙CX
27 7 10 15 26 syl3anc RNrmRingAXBXCXA·˙CX
28 1 3 ringcl RRingBXCXB·˙CX
29 7 11 15 28 syl3anc RNrmRingAXBXCXB·˙CX
30 2 1 12 4 ngpds RNrmGrpA·˙CXB·˙CXA·˙CDB·˙C=NA·˙C-RB·˙C
31 22 27 29 30 syl3anc RNrmRingAXBXCXA·˙CDB·˙C=NA·˙C-RB·˙C
32 20 25 31 3eqtr4d RNrmRingAXBXCXADBNC=A·˙CDB·˙C