Metamath Proof Explorer


Theorem nrmtngnrm

Description: The augmentation of a normed group by its own norm is a normed group with the same norm. (Contributed by AV, 15-Oct-2021)

Ref Expression
Hypothesis nrmtngdist.t T=GtoNrmGrpnormG
Assertion nrmtngnrm GNrmGrpTNrmGrpnormT=normG

Proof

Step Hyp Ref Expression
1 nrmtngdist.t T=GtoNrmGrpnormG
2 ngpgrp GNrmGrpGGrp
3 eqid BaseG=BaseG
4 1 3 nrmtngdist GNrmGrpdistT=distGBaseG×BaseG
5 eqid distGBaseG×BaseG=distGBaseG×BaseG
6 3 5 ngpmet GNrmGrpdistGBaseG×BaseGMetBaseG
7 4 6 eqeltrd GNrmGrpdistTMetBaseG
8 eqid normG=normG
9 3 8 nmf GNrmGrpnormG:BaseG
10 eqid distT=distT
11 1 3 10 tngngp2 normG:BaseGTNrmGrpGGrpdistTMetBaseG
12 9 11 syl GNrmGrpTNrmGrpGGrpdistTMetBaseG
13 2 7 12 mpbir2and GNrmGrpTNrmGrp
14 2 9 jca GNrmGrpGGrpnormG:BaseG
15 reex V
16 1 3 15 tngnm GGrpnormG:BaseGnormG=normT
17 14 16 syl GNrmGrpnormG=normT
18 17 eqcomd GNrmGrpnormT=normG
19 13 18 jca GNrmGrpTNrmGrpnormT=normG