Metamath Proof Explorer


Theorem ntrclsfveq1

Description: If interior and closure functions are related then specific function values are complementary. (Contributed by RP, 27-Jun-2021)

Ref Expression
Hypotheses ntrcls.o O=iVk𝒫i𝒫ij𝒫iikij
ntrcls.d D=OB
ntrcls.r φIDK
ntrclsfv.s φS𝒫B
ntrclsfv.c φC𝒫B
Assertion ntrclsfveq1 φIS=CKBS=BC

Proof

Step Hyp Ref Expression
1 ntrcls.o O=iVk𝒫i𝒫ij𝒫iikij
2 ntrcls.d D=OB
3 ntrcls.r φIDK
4 ntrclsfv.s φS𝒫B
5 ntrclsfv.c φC𝒫B
6 5 elpwid φCB
7 dfss4 CBBBC=C
8 6 7 sylib φBBC=C
9 8 eqcomd φC=BBC
10 9 eqeq2d φBKBS=CBKBS=BBC
11 1 2 3 4 ntrclsfv φIS=BKBS
12 11 eqeq1d φIS=CBKBS=C
13 1 2 3 ntrclskex φK𝒫B𝒫B
14 elmapi K𝒫B𝒫BK:𝒫B𝒫B
15 13 14 syl φK:𝒫B𝒫B
16 2 3 ntrclsrcomplex φBS𝒫B
17 15 16 ffvelcdmd φKBS𝒫B
18 17 elpwid φKBSB
19 difssd φBCB
20 rcompleq KBSBBCBKBS=BCBKBS=BBC
21 18 19 20 syl2anc φKBS=BCBKBS=BBC
22 10 12 21 3bitr4d φIS=CKBS=BC