Metamath Proof Explorer


Theorem ntrclsneine0lem

Description: If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then conditions equal to claiming that at least one (pseudo-)neighborbood of a particular point exists hold equally. (Contributed by RP, 21-May-2021)

Ref Expression
Hypotheses ntrcls.o O = i V k 𝒫 i 𝒫 i j 𝒫 i i k i j
ntrcls.d D = O B
ntrcls.r φ I D K
ntrclslem0.x φ X B
Assertion ntrclsneine0lem φ s 𝒫 B X I s s 𝒫 B ¬ X K s

Proof

Step Hyp Ref Expression
1 ntrcls.o O = i V k 𝒫 i 𝒫 i j 𝒫 i i k i j
2 ntrcls.d D = O B
3 ntrcls.r φ I D K
4 ntrclslem0.x φ X B
5 fveq2 s = t I s = I t
6 5 eleq2d s = t X I s X I t
7 6 cbvrexvw s 𝒫 B X I s t 𝒫 B X I t
8 2 3 ntrclsrcomplex φ B s 𝒫 B
9 8 adantr φ s 𝒫 B B s 𝒫 B
10 2 3 ntrclsrcomplex φ B t 𝒫 B
11 10 adantr φ t 𝒫 B B t 𝒫 B
12 difeq2 s = B t B s = B B t
13 12 adantl φ t 𝒫 B s = B t B s = B B t
14 elpwi t 𝒫 B t B
15 dfss4 t B B B t = t
16 14 15 sylib t 𝒫 B B B t = t
17 16 ad2antlr φ t 𝒫 B s = B t B B t = t
18 13 17 eqtr2d φ t 𝒫 B s = B t t = B s
19 11 18 rspcedeq2vd φ t 𝒫 B s 𝒫 B t = B s
20 fveq2 t = B s I t = I B s
21 20 eleq2d t = B s X I t X I B s
22 21 3ad2ant3 φ s 𝒫 B t = B s X I t X I B s
23 3 adantr φ s 𝒫 B I D K
24 4 adantr φ s 𝒫 B X B
25 simpr φ s 𝒫 B s 𝒫 B
26 1 2 23 24 25 ntrclselnel2 φ s 𝒫 B X I B s ¬ X K s
27 26 3adant3 φ s 𝒫 B t = B s X I B s ¬ X K s
28 22 27 bitrd φ s 𝒫 B t = B s X I t ¬ X K s
29 9 19 28 rexxfrd2 φ t 𝒫 B X I t s 𝒫 B ¬ X K s
30 7 29 syl5bb φ s 𝒫 B X I s s 𝒫 B ¬ X K s