Metamath Proof Explorer


Theorem numacn

Description: A well-orderable set has choice sequences of every length. (Contributed by Mario Carneiro, 31-Aug-2015)

Ref Expression
Assertion numacn AVXdomcardXAC_A

Proof

Step Hyp Ref Expression
1 elex AVAV
2 simpll XdomcardAVf𝒫XAXdomcard
3 elmapi f𝒫XAf:A𝒫X
4 3 adantl XdomcardAVf𝒫XAf:A𝒫X
5 4 frnd XdomcardAVf𝒫XAranf𝒫X
6 5 difss2d XdomcardAVf𝒫XAranf𝒫X
7 sspwuni ranf𝒫XranfX
8 6 7 sylib XdomcardAVf𝒫XAranfX
9 ssnum XdomcardranfXranfdomcard
10 2 8 9 syl2anc XdomcardAVf𝒫XAranfdomcard
11 ssdifin0 ranf𝒫Xranf=
12 5 11 syl XdomcardAVf𝒫XAranf=
13 disjsn ranf=¬ranf
14 12 13 sylib XdomcardAVf𝒫XA¬ranf
15 ac5num ranfdomcard¬ranfhh:ranfranfyranfhyy
16 10 14 15 syl2anc XdomcardAVf𝒫XAhh:ranfranfyranfhyy
17 simpllr XdomcardAVf𝒫XAh:ranfranfyranfhyyAV
18 4 ffnd XdomcardAVf𝒫XAfFnA
19 fveq2 y=fxhy=hfx
20 id y=fxy=fx
21 19 20 eleq12d y=fxhyyhfxfx
22 21 ralrn fFnAyranfhyyxAhfxfx
23 18 22 syl XdomcardAVf𝒫XAyranfhyyxAhfxfx
24 23 biimpa XdomcardAVf𝒫XAyranfhyyxAhfxfx
25 24 adantrl XdomcardAVf𝒫XAh:ranfranfyranfhyyxAhfxfx
26 acnlem AVxAhfxfxgxAgxfx
27 17 25 26 syl2anc XdomcardAVf𝒫XAh:ranfranfyranfhyygxAgxfx
28 16 27 exlimddv XdomcardAVf𝒫XAgxAgxfx
29 28 ralrimiva XdomcardAVf𝒫XAgxAgxfx
30 isacn XdomcardAVXAC_Af𝒫XAgxAgxfx
31 29 30 mpbird XdomcardAVXAC_A
32 31 expcom AVXdomcardXAC_A
33 1 32 syl AVXdomcardXAC_A