Description: Express the set difference of a continuous sum and its left addend as a class of sums. (Contributed by RP, 13-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | oadif1lem.cl1 | |
|
oadif1lem.cl2 | |
||
oadif1lem.sub | |
||
oadif1lem.ord | |
||
oadif1lem.word | |
||
Assertion | oadif1lem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oadif1lem.cl1 | |
|
2 | oadif1lem.cl2 | |
|
3 | oadif1lem.sub | |
|
4 | oadif1lem.ord | |
|
5 | oadif1lem.word | |
|
6 | simpl | |
|
7 | onelon | |
|
8 | 1 7 | sylan | |
9 | ontri1 | |
|
10 | 6 8 9 | syl2an2r | |
11 | 10 | pm5.32da | |
12 | ancom | |
|
13 | 11 12 | bitr3di | |
14 | 13 3 | sylbida | |
15 | eqcom | |
|
16 | 15 | rexbii | |
17 | 14 16 | sylib | |
18 | 17 | ex | |
19 | simpr | |
|
20 | 4 | imp | |
21 | 20 | adantr | |
22 | 19 21 | eqeltrd | |
23 | simpr | |
|
24 | onelon | |
|
25 | 23 24 | sylan | |
26 | 6 25 5 | syl2an2r | |
27 | 6 25 2 | syl2an2r | |
28 | ontri1 | |
|
29 | 6 27 28 | syl2an2r | |
30 | 26 29 | mpbid | |
31 | 30 | adantr | |
32 | 19 31 | eqneltrd | |
33 | 22 32 | jca | |
34 | 33 | rexlimdva2 | |
35 | 18 34 | impbid | |
36 | eldif | |
|
37 | vex | |
|
38 | eqeq1 | |
|
39 | 38 | rexbidv | |
40 | 37 39 | elab | |
41 | 35 36 40 | 3bitr4g | |
42 | 41 | eqrdv | |