Metamath Proof Explorer


Theorem oadif1lem

Description: Express the set difference of a continuous sum and its left addend as a class of sums. (Contributed by RP, 13-Feb-2025)

Ref Expression
Hypotheses oadif1lem.cl1 AOnBOnA˙BOn
oadif1lem.cl2 AOnbOnA˙bOn
oadif1lem.sub AOnBOnAyyA˙BbBA˙b=y
oadif1lem.ord AOnBOnbBA˙bA˙B
oadif1lem.word AOnbOnAA˙b
Assertion oadif1lem AOnBOnA˙BA=x|bBx=A˙b

Proof

Step Hyp Ref Expression
1 oadif1lem.cl1 AOnBOnA˙BOn
2 oadif1lem.cl2 AOnbOnA˙bOn
3 oadif1lem.sub AOnBOnAyyA˙BbBA˙b=y
4 oadif1lem.ord AOnBOnbBA˙bA˙B
5 oadif1lem.word AOnbOnAA˙b
6 simpl AOnBOnAOn
7 onelon A˙BOnyA˙ByOn
8 1 7 sylan AOnBOnyA˙ByOn
9 ontri1 AOnyOnAy¬yA
10 6 8 9 syl2an2r AOnBOnyA˙BAy¬yA
11 10 pm5.32da AOnBOnyA˙BAyyA˙B¬yA
12 ancom yA˙BAyAyyA˙B
13 11 12 bitr3di AOnBOnyA˙B¬yAAyyA˙B
14 13 3 sylbida AOnBOnyA˙B¬yAbBA˙b=y
15 eqcom A˙b=yy=A˙b
16 15 rexbii bBA˙b=ybBy=A˙b
17 14 16 sylib AOnBOnyA˙B¬yAbBy=A˙b
18 17 ex AOnBOnyA˙B¬yAbBy=A˙b
19 simpr AOnBOnbBy=A˙by=A˙b
20 4 imp AOnBOnbBA˙bA˙B
21 20 adantr AOnBOnbBy=A˙bA˙bA˙B
22 19 21 eqeltrd AOnBOnbBy=A˙byA˙B
23 simpr AOnBOnBOn
24 onelon BOnbBbOn
25 23 24 sylan AOnBOnbBbOn
26 6 25 5 syl2an2r AOnBOnbBAA˙b
27 6 25 2 syl2an2r AOnBOnbBA˙bOn
28 ontri1 AOnA˙bOnAA˙b¬A˙bA
29 6 27 28 syl2an2r AOnBOnbBAA˙b¬A˙bA
30 26 29 mpbid AOnBOnbB¬A˙bA
31 30 adantr AOnBOnbBy=A˙b¬A˙bA
32 19 31 eqneltrd AOnBOnbBy=A˙b¬yA
33 22 32 jca AOnBOnbBy=A˙byA˙B¬yA
34 33 rexlimdva2 AOnBOnbBy=A˙byA˙B¬yA
35 18 34 impbid AOnBOnyA˙B¬yAbBy=A˙b
36 eldif yA˙BAyA˙B¬yA
37 vex yV
38 eqeq1 x=yx=A˙by=A˙b
39 38 rexbidv x=ybBx=A˙bbBy=A˙b
40 37 39 elab yx|bBx=A˙bbBy=A˙b
41 35 36 40 3bitr4g AOnBOnyA˙BAyx|bBx=A˙b
42 41 eqrdv AOnBOnA˙BA=x|bBx=A˙b