Description: Ordinal addition as a union of classes. (Contributed by RP, 13-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | oaun3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oacl | |
|
2 | 1 | difexd | |
3 | uniprg | |
|
4 | 2 3 | syldan | |
5 | undif2 | |
|
6 | oaword1 | |
|
7 | ssequn1 | |
|
8 | 6 7 | sylib | |
9 | 5 8 | eqtrid | |
10 | 4 9 | eqtrd | |
11 | oaun3lem4 | |
|
12 | unisng | |
|
13 | 11 12 | syl | |
14 | 10 13 | uneq12d | |
15 | uniun | |
|
16 | df-tp | |
|
17 | rp-abid | |
|
18 | 17 | a1i | |
19 | oadif1 | |
|
20 | eqidd | |
|
21 | 18 19 20 | tpeq123d | |
22 | 16 21 | eqtr3id | |
23 | 22 | unieqd | |
24 | 15 23 | eqtr3id | |
25 | oaun3lem2 | |
|
26 | ssequn2 | |
|
27 | 25 26 | sylib | |
28 | 14 24 27 | 3eqtr3rd | |