Metamath Proof Explorer


Theorem oaun3

Description: Ordinal addition as a union of classes. (Contributed by RP, 13-Feb-2025)

Ref Expression
Assertion oaun3 AOnBOnA+𝑜B=x|aAx=ay|bBy=A+𝑜bz|aAbBz=a+𝑜b

Proof

Step Hyp Ref Expression
1 oacl AOnBOnA+𝑜BOn
2 1 difexd AOnBOnA+𝑜BAV
3 uniprg AOnA+𝑜BAVAA+𝑜BA=AA+𝑜BA
4 2 3 syldan AOnBOnAA+𝑜BA=AA+𝑜BA
5 undif2 AA+𝑜BA=AA+𝑜B
6 oaword1 AOnBOnAA+𝑜B
7 ssequn1 AA+𝑜BAA+𝑜B=A+𝑜B
8 6 7 sylib AOnBOnAA+𝑜B=A+𝑜B
9 5 8 eqtrid AOnBOnAA+𝑜BA=A+𝑜B
10 4 9 eqtrd AOnBOnAA+𝑜BA=A+𝑜B
11 oaun3lem4 AOnBOnz|aAbBz=a+𝑜bsucA+𝑜B
12 unisng z|aAbBz=a+𝑜bsucA+𝑜Bz|aAbBz=a+𝑜b=z|aAbBz=a+𝑜b
13 11 12 syl AOnBOnz|aAbBz=a+𝑜b=z|aAbBz=a+𝑜b
14 10 13 uneq12d AOnBOnAA+𝑜BAz|aAbBz=a+𝑜b=A+𝑜Bz|aAbBz=a+𝑜b
15 uniun AA+𝑜BAz|aAbBz=a+𝑜b=AA+𝑜BAz|aAbBz=a+𝑜b
16 df-tp AA+𝑜BAz|aAbBz=a+𝑜b=AA+𝑜BAz|aAbBz=a+𝑜b
17 rp-abid A=x|aAx=a
18 17 a1i AOnBOnA=x|aAx=a
19 oadif1 AOnBOnA+𝑜BA=y|bBy=A+𝑜b
20 eqidd AOnBOnz|aAbBz=a+𝑜b=z|aAbBz=a+𝑜b
21 18 19 20 tpeq123d AOnBOnAA+𝑜BAz|aAbBz=a+𝑜b=x|aAx=ay|bBy=A+𝑜bz|aAbBz=a+𝑜b
22 16 21 eqtr3id AOnBOnAA+𝑜BAz|aAbBz=a+𝑜b=x|aAx=ay|bBy=A+𝑜bz|aAbBz=a+𝑜b
23 22 unieqd AOnBOnAA+𝑜BAz|aAbBz=a+𝑜b=x|aAx=ay|bBy=A+𝑜bz|aAbBz=a+𝑜b
24 15 23 eqtr3id AOnBOnAA+𝑜BAz|aAbBz=a+𝑜b=x|aAx=ay|bBy=A+𝑜bz|aAbBz=a+𝑜b
25 oaun3lem2 AOnBOnz|aAbBz=a+𝑜bA+𝑜B
26 ssequn2 z|aAbBz=a+𝑜bA+𝑜BA+𝑜Bz|aAbBz=a+𝑜b=A+𝑜B
27 25 26 sylib AOnBOnA+𝑜Bz|aAbBz=a+𝑜b=A+𝑜B
28 14 24 27 3eqtr3rd AOnBOnA+𝑜B=x|aAx=ay|bBy=A+𝑜bz|aAbBz=a+𝑜b