Metamath Proof Explorer


Theorem odfvalALT

Description: Shorter proof of odfval using ax-rep . (Contributed by Mario Carneiro, 13-Jul-2014) (Revised by AV, 5-Oct-2020) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses odval.1 X=BaseG
odval.2 ·˙=G
odval.3 0˙=0G
odval.4 O=odG
Assertion odfvalALT O=xXy|y·˙x=0˙/iifi=0supi<

Proof

Step Hyp Ref Expression
1 odval.1 X=BaseG
2 odval.2 ·˙=G
3 odval.3 0˙=0G
4 odval.4 O=odG
5 fveq2 g=GBaseg=BaseG
6 5 1 eqtr4di g=GBaseg=X
7 fveq2 g=Gg=G
8 7 2 eqtr4di g=Gg=·˙
9 8 oveqd g=Gygx=y·˙x
10 fveq2 g=G0g=0G
11 10 3 eqtr4di g=G0g=0˙
12 9 11 eqeq12d g=Gygx=0gy·˙x=0˙
13 12 rabbidv g=Gy|ygx=0g=y|y·˙x=0˙
14 13 csbeq1d g=Gy|ygx=0g/iifi=0supi<=y|y·˙x=0˙/iifi=0supi<
15 6 14 mpteq12dv g=GxBasegy|ygx=0g/iifi=0supi<=xXy|y·˙x=0˙/iifi=0supi<
16 df-od od=gVxBasegy|ygx=0g/iifi=0supi<
17 15 16 1 mptfvmpt GVodG=xXy|y·˙x=0˙/iifi=0supi<
18 fvprc ¬GVodG=
19 fvprc ¬GVBaseG=
20 1 19 eqtrid ¬GVX=
21 20 mpteq1d ¬GVxXy|y·˙x=0˙/iifi=0supi<=xy|y·˙x=0˙/iifi=0supi<
22 mpt0 xy|y·˙x=0˙/iifi=0supi<=
23 21 22 eqtrdi ¬GVxXy|y·˙x=0˙/iifi=0supi<=
24 18 23 eqtr4d ¬GVodG=xXy|y·˙x=0˙/iifi=0supi<
25 17 24 pm2.61i odG=xXy|y·˙x=0˙/iifi=0supi<
26 4 25 eqtri O=xXy|y·˙x=0˙/iifi=0supi<