Description: If a nonzero multiple of an element is zero, the element has positive order. (Contributed by Stefan O'Rear, 5-Sep-2015) (Revised by Mario Carneiro, 22-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | odcl.1 | |
|
odcl.2 | |
||
odid.3 | |
||
odid.4 | |
||
Assertion | odnncl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | odcl.1 | |
|
2 | odcl.2 | |
|
3 | odid.3 | |
|
4 | odid.4 | |
|
5 | simpl2 | |
|
6 | simprl | |
|
7 | simpl3 | |
|
8 | 7 | zcnd | |
9 | abs00 | |
|
10 | 9 | necon3bbid | |
11 | 8 10 | syl | |
12 | 6 11 | mpbird | |
13 | nn0abscl | |
|
14 | 7 13 | syl | |
15 | elnn0 | |
|
16 | 14 15 | sylib | |
17 | 16 | ord | |
18 | 12 17 | mt3d | |
19 | simprr | |
|
20 | oveq1 | |
|
21 | 20 | eqeq1d | |
22 | 19 21 | syl5ibrcom | |
23 | simpl1 | |
|
24 | eqid | |
|
25 | 1 3 24 | mulgneg | |
26 | 23 7 5 25 | syl3anc | |
27 | 19 | fveq2d | |
28 | 4 24 | grpinvid | |
29 | 23 28 | syl | |
30 | 26 27 29 | 3eqtrd | |
31 | oveq1 | |
|
32 | 31 | eqeq1d | |
33 | 30 32 | syl5ibrcom | |
34 | 7 | zred | |
35 | 34 | absord | |
36 | 22 33 35 | mpjaod | |
37 | 1 2 3 4 | odlem2 | |
38 | 5 18 36 37 | syl3anc | |
39 | elfznn | |
|
40 | 38 39 | syl | |