Metamath Proof Explorer


Theorem odnncl

Description: If a nonzero multiple of an element is zero, the element has positive order. (Contributed by Stefan O'Rear, 5-Sep-2015) (Revised by Mario Carneiro, 22-Sep-2015)

Ref Expression
Hypotheses odcl.1 X=BaseG
odcl.2 O=odG
odid.3 ·˙=G
odid.4 0˙=0G
Assertion odnncl GGrpAXNN0N·˙A=0˙OA

Proof

Step Hyp Ref Expression
1 odcl.1 X=BaseG
2 odcl.2 O=odG
3 odid.3 ·˙=G
4 odid.4 0˙=0G
5 simpl2 GGrpAXNN0N·˙A=0˙AX
6 simprl GGrpAXNN0N·˙A=0˙N0
7 simpl3 GGrpAXNN0N·˙A=0˙N
8 7 zcnd GGrpAXNN0N·˙A=0˙N
9 abs00 NN=0N=0
10 9 necon3bbid N¬N=0N0
11 8 10 syl GGrpAXNN0N·˙A=0˙¬N=0N0
12 6 11 mpbird GGrpAXNN0N·˙A=0˙¬N=0
13 nn0abscl NN0
14 7 13 syl GGrpAXNN0N·˙A=0˙N0
15 elnn0 N0NN=0
16 14 15 sylib GGrpAXNN0N·˙A=0˙NN=0
17 16 ord GGrpAXNN0N·˙A=0˙¬NN=0
18 12 17 mt3d GGrpAXNN0N·˙A=0˙N
19 simprr GGrpAXNN0N·˙A=0˙N·˙A=0˙
20 oveq1 N=NN·˙A=N·˙A
21 20 eqeq1d N=NN·˙A=0˙N·˙A=0˙
22 19 21 syl5ibrcom GGrpAXNN0N·˙A=0˙N=NN·˙A=0˙
23 simpl1 GGrpAXNN0N·˙A=0˙GGrp
24 eqid invgG=invgG
25 1 3 24 mulgneg GGrpNAX- N·˙A=invgGN·˙A
26 23 7 5 25 syl3anc GGrpAXNN0N·˙A=0˙- N·˙A=invgGN·˙A
27 19 fveq2d GGrpAXNN0N·˙A=0˙invgGN·˙A=invgG0˙
28 4 24 grpinvid GGrpinvgG0˙=0˙
29 23 28 syl GGrpAXNN0N·˙A=0˙invgG0˙=0˙
30 26 27 29 3eqtrd GGrpAXNN0N·˙A=0˙- N·˙A=0˙
31 oveq1 N=NN·˙A=- N·˙A
32 31 eqeq1d N=NN·˙A=0˙- N·˙A=0˙
33 30 32 syl5ibrcom GGrpAXNN0N·˙A=0˙N=NN·˙A=0˙
34 7 zred GGrpAXNN0N·˙A=0˙N
35 34 absord GGrpAXNN0N·˙A=0˙N=NN=N
36 22 33 35 mpjaod GGrpAXNN0N·˙A=0˙N·˙A=0˙
37 1 2 3 4 odlem2 AXNN·˙A=0˙OA1N
38 5 18 36 37 syl3anc GGrpAXNN0N·˙A=0˙OA1N
39 elfznn OA1NOA
40 38 39 syl GGrpAXNN0N·˙A=0˙OA