Metamath Proof Explorer


Theorem oecl

Description: Closure law for ordinal exponentiation. Remark 2.8 of Schloeder p. 5. (Contributed by NM, 1-Jan-2005) (Proof shortened by Andrew Salmon, 22-Oct-2011)

Ref Expression
Assertion oecl AOnBOnA𝑜BOn

Proof

Step Hyp Ref Expression
1 oveq2 B=𝑜B=𝑜
2 oe0m0 𝑜=1𝑜
3 1on 1𝑜On
4 2 3 eqeltri 𝑜On
5 1 4 eqeltrdi B=𝑜BOn
6 5 adantl BOnB=𝑜BOn
7 oe0m1 BOnB𝑜B=
8 7 biimpa BOnB𝑜B=
9 0elon On
10 8 9 eqeltrdi BOnB𝑜BOn
11 10 adantll BOnBOnB𝑜BOn
12 6 11 oe0lem BOnBOn𝑜BOn
13 12 anidms BOn𝑜BOn
14 oveq1 A=A𝑜B=𝑜B
15 14 eleq1d A=A𝑜BOn𝑜BOn
16 13 15 imbitrrid A=BOnA𝑜BOn
17 16 impcom BOnA=A𝑜BOn
18 oveq2 x=A𝑜x=A𝑜
19 18 eleq1d x=A𝑜xOnA𝑜On
20 oveq2 x=yA𝑜x=A𝑜y
21 20 eleq1d x=yA𝑜xOnA𝑜yOn
22 oveq2 x=sucyA𝑜x=A𝑜sucy
23 22 eleq1d x=sucyA𝑜xOnA𝑜sucyOn
24 oveq2 x=BA𝑜x=A𝑜B
25 24 eleq1d x=BA𝑜xOnA𝑜BOn
26 oe0 AOnA𝑜=1𝑜
27 26 3 eqeltrdi AOnA𝑜On
28 27 adantr AOnAA𝑜On
29 omcl A𝑜yOnAOnA𝑜y𝑜AOn
30 29 expcom AOnA𝑜yOnA𝑜y𝑜AOn
31 30 adantr AOnyOnA𝑜yOnA𝑜y𝑜AOn
32 oesuc AOnyOnA𝑜sucy=A𝑜y𝑜A
33 32 eleq1d AOnyOnA𝑜sucyOnA𝑜y𝑜AOn
34 31 33 sylibrd AOnyOnA𝑜yOnA𝑜sucyOn
35 34 expcom yOnAOnA𝑜yOnA𝑜sucyOn
36 35 adantrd yOnAOnAA𝑜yOnA𝑜sucyOn
37 vex xV
38 iunon xVyxA𝑜yOnyxA𝑜yOn
39 37 38 mpan yxA𝑜yOnyxA𝑜yOn
40 oelim AOnxVLimxAA𝑜x=yxA𝑜y
41 37 40 mpanlr1 AOnLimxAA𝑜x=yxA𝑜y
42 41 anasss AOnLimxAA𝑜x=yxA𝑜y
43 42 an12s LimxAOnAA𝑜x=yxA𝑜y
44 43 eleq1d LimxAOnAA𝑜xOnyxA𝑜yOn
45 39 44 imbitrrid LimxAOnAyxA𝑜yOnA𝑜xOn
46 45 ex LimxAOnAyxA𝑜yOnA𝑜xOn
47 19 21 23 25 28 36 46 tfinds3 BOnAOnAA𝑜BOn
48 47 expd BOnAOnAA𝑜BOn
49 48 com12 AOnBOnAA𝑜BOn
50 49 imp31 AOnBOnAA𝑜BOn
51 17 50 oe0lem AOnBOnA𝑜BOn