Description: Closure law for ordinal exponentiation. Remark 2.8 of Schloeder p. 5. (Contributed by NM, 1-Jan-2005) (Proof shortened by Andrew Salmon, 22-Oct-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | oecl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 | |
|
2 | oe0m0 | |
|
3 | 1on | |
|
4 | 2 3 | eqeltri | |
5 | 1 4 | eqeltrdi | |
6 | 5 | adantl | |
7 | oe0m1 | |
|
8 | 7 | biimpa | |
9 | 0elon | |
|
10 | 8 9 | eqeltrdi | |
11 | 10 | adantll | |
12 | 6 11 | oe0lem | |
13 | 12 | anidms | |
14 | oveq1 | |
|
15 | 14 | eleq1d | |
16 | 13 15 | imbitrrid | |
17 | 16 | impcom | |
18 | oveq2 | |
|
19 | 18 | eleq1d | |
20 | oveq2 | |
|
21 | 20 | eleq1d | |
22 | oveq2 | |
|
23 | 22 | eleq1d | |
24 | oveq2 | |
|
25 | 24 | eleq1d | |
26 | oe0 | |
|
27 | 26 3 | eqeltrdi | |
28 | 27 | adantr | |
29 | omcl | |
|
30 | 29 | expcom | |
31 | 30 | adantr | |
32 | oesuc | |
|
33 | 32 | eleq1d | |
34 | 31 33 | sylibrd | |
35 | 34 | expcom | |
36 | 35 | adantrd | |
37 | vex | |
|
38 | iunon | |
|
39 | 37 38 | mpan | |
40 | oelim | |
|
41 | 37 40 | mpanlr1 | |
42 | 41 | anasss | |
43 | 42 | an12s | |
44 | 43 | eleq1d | |
45 | 39 44 | imbitrrid | |
46 | 45 | ex | |
47 | 19 21 23 25 28 36 46 | tfinds3 | |
48 | 47 | expd | |
49 | 48 | com12 | |
50 | 49 | imp31 | |
51 | 17 50 | oe0lem | |