Description: A bijection of the base sets induces a bijection on ordinal exponentials. (The assumption ( F(/) ) = (/) can be discharged using fveqf1o .) (Contributed by Mario Carneiro, 30-May-2015) (Revised by AV, 3-Jul-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | oef1o.f | |
|
oef1o.g | |
||
oef1o.a | |
||
oef1o.b | |
||
oef1o.c | |
||
oef1o.d | |
||
oef1o.z | |
||
oef1o.k | |
||
oef1o.h | |
||
Assertion | oef1o | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oef1o.f | |
|
2 | oef1o.g | |
|
3 | oef1o.a | |
|
4 | oef1o.b | |
|
5 | oef1o.c | |
|
6 | oef1o.d | |
|
7 | oef1o.z | |
|
8 | oef1o.k | |
|
9 | oef1o.h | |
|
10 | eqid | |
|
11 | 10 5 6 | cantnff1o | |
12 | eqid | |
|
13 | eqid | |
|
14 | eqid | |
|
15 | f1ocnv | |
|
16 | 2 15 | syl | |
17 | ondif1 | |
|
18 | 17 | simprbi | |
19 | 3 18 | syl | |
20 | 12 13 14 16 1 4 3 6 5 19 | mapfien | |
21 | f1oeq1 | |
|
22 | 8 21 | ax-mp | |
23 | 20 22 | sylibr | |
24 | eqid | |
|
25 | 24 5 6 | cantnfdm | |
26 | 7 | breq2d | |
27 | 26 | rabbidv | |
28 | 25 27 | eqtr4d | |
29 | 28 | f1oeq3d | |
30 | 23 29 | mpbird | |
31 | 3 | eldifad | |
32 | 12 31 4 | cantnfdm | |
33 | 32 | f1oeq2d | |
34 | 30 33 | mpbird | |
35 | f1oco | |
|
36 | 11 34 35 | syl2anc | |
37 | eqid | |
|
38 | 37 31 4 | cantnff1o | |
39 | f1ocnv | |
|
40 | 38 39 | syl | |
41 | f1oco | |
|
42 | 36 40 41 | syl2anc | |
43 | f1oeq1 | |
|
44 | 9 43 | ax-mp | |
45 | 42 44 | sylibr | |