Metamath Proof Explorer


Theorem oef1o

Description: A bijection of the base sets induces a bijection on ordinal exponentials. (The assumption ( F(/) ) = (/) can be discharged using fveqf1o .) (Contributed by Mario Carneiro, 30-May-2015) (Revised by AV, 3-Jul-2019)

Ref Expression
Hypotheses oef1o.f φF:A1-1 ontoC
oef1o.g φG:B1-1 ontoD
oef1o.a φAOn1𝑜
oef1o.b φBOn
oef1o.c φCOn
oef1o.d φDOn
oef1o.z φF=
oef1o.k K=yxAB|finSuppxFyG-1
oef1o.h H=CCNFDKACNFB-1
Assertion oef1o φH:A𝑜B1-1 ontoC𝑜D

Proof

Step Hyp Ref Expression
1 oef1o.f φF:A1-1 ontoC
2 oef1o.g φG:B1-1 ontoD
3 oef1o.a φAOn1𝑜
4 oef1o.b φBOn
5 oef1o.c φCOn
6 oef1o.d φDOn
7 oef1o.z φF=
8 oef1o.k K=yxAB|finSuppxFyG-1
9 oef1o.h H=CCNFDKACNFB-1
10 eqid domCCNFD=domCCNFD
11 10 5 6 cantnff1o φCCNFD:domCCNFD1-1 ontoC𝑜D
12 eqid xAB|finSuppx=xAB|finSuppx
13 eqid xCD|finSuppFx=xCD|finSuppFx
14 eqid F=F
15 f1ocnv G:B1-1 ontoDG-1:D1-1 ontoB
16 2 15 syl φG-1:D1-1 ontoB
17 ondif1 AOn1𝑜AOnA
18 17 simprbi AOn1𝑜A
19 3 18 syl φA
20 12 13 14 16 1 4 3 6 5 19 mapfien φyxAB|finSuppxFyG-1:xAB|finSuppx1-1 ontoxCD|finSuppFx
21 f1oeq1 K=yxAB|finSuppxFyG-1K:xAB|finSuppx1-1 ontoxCD|finSuppFxyxAB|finSuppxFyG-1:xAB|finSuppx1-1 ontoxCD|finSuppFx
22 8 21 ax-mp K:xAB|finSuppx1-1 ontoxCD|finSuppFxyxAB|finSuppxFyG-1:xAB|finSuppx1-1 ontoxCD|finSuppFx
23 20 22 sylibr φK:xAB|finSuppx1-1 ontoxCD|finSuppFx
24 eqid xCD|finSuppx=xCD|finSuppx
25 24 5 6 cantnfdm φdomCCNFD=xCD|finSuppx
26 7 breq2d φfinSuppFxfinSuppx
27 26 rabbidv φxCD|finSuppFx=xCD|finSuppx
28 25 27 eqtr4d φdomCCNFD=xCD|finSuppFx
29 28 f1oeq3d φK:xAB|finSuppx1-1 ontodomCCNFDK:xAB|finSuppx1-1 ontoxCD|finSuppFx
30 23 29 mpbird φK:xAB|finSuppx1-1 ontodomCCNFD
31 3 eldifad φAOn
32 12 31 4 cantnfdm φdomACNFB=xAB|finSuppx
33 32 f1oeq2d φK:domACNFB1-1 ontodomCCNFDK:xAB|finSuppx1-1 ontodomCCNFD
34 30 33 mpbird φK:domACNFB1-1 ontodomCCNFD
35 f1oco CCNFD:domCCNFD1-1 ontoC𝑜DK:domACNFB1-1 ontodomCCNFDCCNFDK:domACNFB1-1 ontoC𝑜D
36 11 34 35 syl2anc φCCNFDK:domACNFB1-1 ontoC𝑜D
37 eqid domACNFB=domACNFB
38 37 31 4 cantnff1o φACNFB:domACNFB1-1 ontoA𝑜B
39 f1ocnv ACNFB:domACNFB1-1 ontoA𝑜BACNFB-1:A𝑜B1-1 ontodomACNFB
40 38 39 syl φACNFB-1:A𝑜B1-1 ontodomACNFB
41 f1oco CCNFDK:domACNFB1-1 ontoC𝑜DACNFB-1:A𝑜B1-1 ontodomACNFBCCNFDKACNFB-1:A𝑜B1-1 ontoC𝑜D
42 36 40 41 syl2anc φCCNFDKACNFB-1:A𝑜B1-1 ontoC𝑜D
43 f1oeq1 H=CCNFDKACNFB-1H:A𝑜B1-1 ontoC𝑜DCCNFDKACNFB-1:A𝑜B1-1 ontoC𝑜D
44 9 43 ax-mp H:A𝑜B1-1 ontoC𝑜DCCNFDKACNFB-1:A𝑜B1-1 ontoC𝑜D
45 42 44 sylibr φH:A𝑜B1-1 ontoC𝑜D