Metamath Proof Explorer


Theorem oeoelem

Description: Lemma for oeoe . (Contributed by Eric Schmidt, 26-May-2009)

Ref Expression
Hypotheses oeoelem.1 AOn
oeoelem.2 A
Assertion oeoelem BOnCOnA𝑜B𝑜C=A𝑜B𝑜C

Proof

Step Hyp Ref Expression
1 oeoelem.1 AOn
2 oeoelem.2 A
3 oveq2 x=A𝑜B𝑜x=A𝑜B𝑜
4 oveq2 x=B𝑜x=B𝑜
5 4 oveq2d x=A𝑜B𝑜x=A𝑜B𝑜
6 3 5 eqeq12d x=A𝑜B𝑜x=A𝑜B𝑜xA𝑜B𝑜=A𝑜B𝑜
7 oveq2 x=yA𝑜B𝑜x=A𝑜B𝑜y
8 oveq2 x=yB𝑜x=B𝑜y
9 8 oveq2d x=yA𝑜B𝑜x=A𝑜B𝑜y
10 7 9 eqeq12d x=yA𝑜B𝑜x=A𝑜B𝑜xA𝑜B𝑜y=A𝑜B𝑜y
11 oveq2 x=sucyA𝑜B𝑜x=A𝑜B𝑜sucy
12 oveq2 x=sucyB𝑜x=B𝑜sucy
13 12 oveq2d x=sucyA𝑜B𝑜x=A𝑜B𝑜sucy
14 11 13 eqeq12d x=sucyA𝑜B𝑜x=A𝑜B𝑜xA𝑜B𝑜sucy=A𝑜B𝑜sucy
15 oveq2 x=CA𝑜B𝑜x=A𝑜B𝑜C
16 oveq2 x=CB𝑜x=B𝑜C
17 16 oveq2d x=CA𝑜B𝑜x=A𝑜B𝑜C
18 15 17 eqeq12d x=CA𝑜B𝑜x=A𝑜B𝑜xA𝑜B𝑜C=A𝑜B𝑜C
19 oecl AOnBOnA𝑜BOn
20 1 19 mpan BOnA𝑜BOn
21 oe0 A𝑜BOnA𝑜B𝑜=1𝑜
22 20 21 syl BOnA𝑜B𝑜=1𝑜
23 om0 BOnB𝑜=
24 23 oveq2d BOnA𝑜B𝑜=A𝑜
25 oe0 AOnA𝑜=1𝑜
26 1 25 ax-mp A𝑜=1𝑜
27 24 26 eqtrdi BOnA𝑜B𝑜=1𝑜
28 22 27 eqtr4d BOnA𝑜B𝑜=A𝑜B𝑜
29 oveq1 A𝑜B𝑜y=A𝑜B𝑜yA𝑜B𝑜y𝑜A𝑜B=A𝑜B𝑜y𝑜A𝑜B
30 oesuc A𝑜BOnyOnA𝑜B𝑜sucy=A𝑜B𝑜y𝑜A𝑜B
31 20 30 sylan BOnyOnA𝑜B𝑜sucy=A𝑜B𝑜y𝑜A𝑜B
32 omsuc BOnyOnB𝑜sucy=B𝑜y+𝑜B
33 32 oveq2d BOnyOnA𝑜B𝑜sucy=A𝑜B𝑜y+𝑜B
34 omcl BOnyOnB𝑜yOn
35 oeoa AOnB𝑜yOnBOnA𝑜B𝑜y+𝑜B=A𝑜B𝑜y𝑜A𝑜B
36 1 35 mp3an1 B𝑜yOnBOnA𝑜B𝑜y+𝑜B=A𝑜B𝑜y𝑜A𝑜B
37 34 36 sylan BOnyOnBOnA𝑜B𝑜y+𝑜B=A𝑜B𝑜y𝑜A𝑜B
38 37 anabss1 BOnyOnA𝑜B𝑜y+𝑜B=A𝑜B𝑜y𝑜A𝑜B
39 33 38 eqtrd BOnyOnA𝑜B𝑜sucy=A𝑜B𝑜y𝑜A𝑜B
40 31 39 eqeq12d BOnyOnA𝑜B𝑜sucy=A𝑜B𝑜sucyA𝑜B𝑜y𝑜A𝑜B=A𝑜B𝑜y𝑜A𝑜B
41 29 40 imbitrrid BOnyOnA𝑜B𝑜y=A𝑜B𝑜yA𝑜B𝑜sucy=A𝑜B𝑜sucy
42 41 expcom yOnBOnA𝑜B𝑜y=A𝑜B𝑜yA𝑜B𝑜sucy=A𝑜B𝑜sucy
43 iuneq2 yxA𝑜B𝑜y=A𝑜B𝑜yyxA𝑜B𝑜y=yxA𝑜B𝑜y
44 vex xV
45 oen0 AOnBOnAA𝑜B
46 2 45 mpan2 AOnBOnA𝑜B
47 oelim A𝑜BOnxVLimxA𝑜BA𝑜B𝑜x=yxA𝑜B𝑜y
48 19 47 sylanl1 AOnBOnxVLimxA𝑜BA𝑜B𝑜x=yxA𝑜B𝑜y
49 46 48 mpidan AOnBOnxVLimxA𝑜B𝑜x=yxA𝑜B𝑜y
50 1 49 mpanl1 BOnxVLimxA𝑜B𝑜x=yxA𝑜B𝑜y
51 44 50 mpanr1 BOnLimxA𝑜B𝑜x=yxA𝑜B𝑜y
52 omlim BOnxVLimxB𝑜x=yxB𝑜y
53 44 52 mpanr1 BOnLimxB𝑜x=yxB𝑜y
54 53 oveq2d BOnLimxA𝑜B𝑜x=A𝑜yxB𝑜y
55 limord LimxOrdx
56 ordelon OrdxyxyOn
57 55 56 sylan LimxyxyOn
58 57 34 sylan2 BOnLimxyxB𝑜yOn
59 58 anassrs BOnLimxyxB𝑜yOn
60 59 ralrimiva BOnLimxyxB𝑜yOn
61 0ellim Limxx
62 61 ne0d Limxx
63 62 adantl BOnLimxx
64 vex wV
65 oelim AOnwVLimwAA𝑜w=zwA𝑜z
66 2 65 mpan2 AOnwVLimwA𝑜w=zwA𝑜z
67 1 66 mpan wVLimwA𝑜w=zwA𝑜z
68 64 67 mpan LimwA𝑜w=zwA𝑜z
69 oewordi zOnwOnAOnAzwA𝑜zA𝑜w
70 2 69 mpan2 zOnwOnAOnzwA𝑜zA𝑜w
71 1 70 mp3an3 zOnwOnzwA𝑜zA𝑜w
72 71 3impia zOnwOnzwA𝑜zA𝑜w
73 68 72 onoviun xVyxB𝑜yOnxA𝑜yxB𝑜y=yxA𝑜B𝑜y
74 44 60 63 73 mp3an2i BOnLimxA𝑜yxB𝑜y=yxA𝑜B𝑜y
75 54 74 eqtrd BOnLimxA𝑜B𝑜x=yxA𝑜B𝑜y
76 51 75 eqeq12d BOnLimxA𝑜B𝑜x=A𝑜B𝑜xyxA𝑜B𝑜y=yxA𝑜B𝑜y
77 43 76 imbitrrid BOnLimxyxA𝑜B𝑜y=A𝑜B𝑜yA𝑜B𝑜x=A𝑜B𝑜x
78 77 expcom LimxBOnyxA𝑜B𝑜y=A𝑜B𝑜yA𝑜B𝑜x=A𝑜B𝑜x
79 6 10 14 18 28 42 78 tfinds3 COnBOnA𝑜B𝑜C=A𝑜B𝑜C
80 79 impcom BOnCOnA𝑜B𝑜C=A𝑜B𝑜C