Metamath Proof Explorer


Theorem ofcfval4

Description: The function/constant operation expressed as an operation composition. (Contributed by Thierry Arnoux, 31-Jan-2017)

Ref Expression
Hypotheses ofcfval4.1 φF:AB
ofcfval4.2 φAV
ofcfval4.3 φCW
Assertion ofcfval4 φFfcRC=xBxRCF

Proof

Step Hyp Ref Expression
1 ofcfval4.1 φF:AB
2 ofcfval4.2 φAV
3 ofcfval4.3 φCW
4 1 fdmd φdomF=A
5 4 mpteq1d φydomFFyRC=yAFyRC
6 1 2 fexd φFV
7 ofcfval3 FVCWFfcRC=ydomFFyRC
8 6 3 7 syl2anc φFfcRC=ydomFFyRC
9 1 ffvelcdmda φyAFyB
10 1 feqmptd φF=yAFy
11 eqidd φxBxRC=xBxRC
12 oveq1 x=FyxRC=FyRC
13 9 10 11 12 fmptco φxBxRCF=yAFyRC
14 5 8 13 3eqtr4d φFfcRC=xBxRCF