Metamath Proof Explorer


Theorem offval2f

Description: The function operation expressed as a mapping. (Contributed by Thierry Arnoux, 23-Jun-2017)

Ref Expression
Hypotheses offval2f.0 xφ
offval2f.a _xA
offval2f.1 φAV
offval2f.2 φxABW
offval2f.3 φxACX
offval2f.4 φF=xAB
offval2f.5 φG=xAC
Assertion offval2f φFRfG=xABRC

Proof

Step Hyp Ref Expression
1 offval2f.0 xφ
2 offval2f.a _xA
3 offval2f.1 φAV
4 offval2f.2 φxABW
5 offval2f.3 φxACX
6 offval2f.4 φF=xAB
7 offval2f.5 φG=xAC
8 4 ex φxABW
9 1 8 ralrimi φxABW
10 2 fnmptf xABWxABFnA
11 9 10 syl φxABFnA
12 6 fneq1d φFFnAxABFnA
13 11 12 mpbird φFFnA
14 5 ex φxACX
15 1 14 ralrimi φxACX
16 2 fnmptf xACXxACFnA
17 15 16 syl φxACFnA
18 7 fneq1d φGFnAxACFnA
19 17 18 mpbird φGFnA
20 inidm AA=A
21 6 adantr φyAF=xAB
22 21 fveq1d φyAFy=xABy
23 7 adantr φyAG=xAC
24 23 fveq1d φyAGy=xACy
25 13 19 3 3 20 22 24 offval φFRfG=yAxAByRxACy
26 nfcv _yA
27 nffvmpt1 _xxABy
28 nfcv _xR
29 nffvmpt1 _xxACy
30 27 28 29 nfov _xxAByRxACy
31 nfcv _yxABxRxACx
32 fveq2 y=xxABy=xABx
33 fveq2 y=xxACy=xACx
34 32 33 oveq12d y=xxAByRxACy=xABxRxACx
35 26 2 30 31 34 cbvmptf yAxAByRxACy=xAxABxRxACx
36 simpr φxAxA
37 2 fvmpt2f xABWxABx=B
38 36 4 37 syl2anc φxAxABx=B
39 2 fvmpt2f xACXxACx=C
40 36 5 39 syl2anc φxAxACx=C
41 38 40 oveq12d φxAxABxRxACx=BRC
42 1 41 mpteq2da φxAxABxRxACx=xABRC
43 35 42 eqtrid φyAxAByRxACy=xABRC
44 25 43 eqtrd φFRfG=xABRC