Metamath Proof Explorer


Theorem ofoacl

Description: Closure law for component wise addition of ordinal-yielding functions. (Contributed by RP, 5-Jan-2025)

Ref Expression
Assertion ofoacl AVBOnC=ω𝑜BFCAGCAF+𝑜fGCA

Proof

Step Hyp Ref Expression
1 ovres FCAGCAFf+𝑜CA×CAG=F+𝑜fG
2 1 adantl AVBOnC=ω𝑜BFCAGCAFf+𝑜CA×CAG=F+𝑜fG
3 id AVAV
4 inidm AA=A
5 4 a1i AVAA=A
6 5 eqcomd AVA=AA
7 3 3 6 3jca AVAVAVA=AA
8 ofoaf AVAVA=AABOnC=ω𝑜Bf+𝑜CA×CA:CA×CACA
9 7 8 sylan AVBOnC=ω𝑜Bf+𝑜CA×CA:CA×CACA
10 9 fovcdmda AVBOnC=ω𝑜BFCAGCAFf+𝑜CA×CAGCA
11 2 10 eqeltrrd AVBOnC=ω𝑜BFCAGCAF+𝑜fGCA