Metamath Proof Explorer


Theorem om1val

Description: The definition of the loop space. (Contributed by Mario Carneiro, 10-Jul-2015)

Ref Expression
Hypotheses om1val.o O=JΩ1Y
om1val.b φB=fIICnJ|f0=Yf1=Y
om1val.p φ+˙=*𝑝J
om1val.k φK=J^koII
om1val.j φJTopOnX
om1val.y φYX
Assertion om1val φO=BasendxB+ndx+˙TopSetndxK

Proof

Step Hyp Ref Expression
1 om1val.o O=JΩ1Y
2 om1val.b φB=fIICnJ|f0=Yf1=Y
3 om1val.p φ+˙=*𝑝J
4 om1val.k φK=J^koII
5 om1val.j φJTopOnX
6 om1val.y φYX
7 df-om1 Ω1=jTop,yjBasendxfIICnj|f0=yf1=y+ndx*𝑝jTopSetndxj^koII
8 7 a1i φΩ1=jTop,yjBasendxfIICnj|f0=yf1=y+ndx*𝑝jTopSetndxj^koII
9 simprl φj=Jy=Yj=J
10 9 oveq2d φj=Jy=YIICnj=IICnJ
11 simprr φj=Jy=Yy=Y
12 11 eqeq2d φj=Jy=Yf0=yf0=Y
13 11 eqeq2d φj=Jy=Yf1=yf1=Y
14 12 13 anbi12d φj=Jy=Yf0=yf1=yf0=Yf1=Y
15 10 14 rabeqbidv φj=Jy=YfIICnj|f0=yf1=y=fIICnJ|f0=Yf1=Y
16 2 adantr φj=Jy=YB=fIICnJ|f0=Yf1=Y
17 15 16 eqtr4d φj=Jy=YfIICnj|f0=yf1=y=B
18 17 opeq2d φj=Jy=YBasendxfIICnj|f0=yf1=y=BasendxB
19 9 fveq2d φj=Jy=Y*𝑝j=*𝑝J
20 3 adantr φj=Jy=Y+˙=*𝑝J
21 19 20 eqtr4d φj=Jy=Y*𝑝j=+˙
22 21 opeq2d φj=Jy=Y+ndx*𝑝j=+ndx+˙
23 9 oveq1d φj=Jy=Yj^koII=J^koII
24 4 adantr φj=Jy=YK=J^koII
25 23 24 eqtr4d φj=Jy=Yj^koII=K
26 25 opeq2d φj=Jy=YTopSetndxj^koII=TopSetndxK
27 18 22 26 tpeq123d φj=Jy=YBasendxfIICnj|f0=yf1=y+ndx*𝑝jTopSetndxj^koII=BasendxB+ndx+˙TopSetndxK
28 unieq j=Jj=J
29 28 adantl φj=Jj=J
30 toponuni JTopOnXX=J
31 5 30 syl φX=J
32 31 adantr φj=JX=J
33 29 32 eqtr4d φj=Jj=X
34 topontop JTopOnXJTop
35 5 34 syl φJTop
36 tpex BasendxB+ndx+˙TopSetndxKV
37 36 a1i φBasendxB+ndx+˙TopSetndxKV
38 8 27 33 35 6 37 ovmpodx φJΩ1Y=BasendxB+ndx+˙TopSetndxK
39 1 38 eqtrid φO=BasendxB+ndx+˙TopSetndxK