Metamath Proof Explorer


Theorem omlfh3N

Description: Foulis-Holland Theorem, part 3. Dual of omlfh1N . (Contributed by NM, 8-Nov-2011) (New usage is discouraged.)

Ref Expression
Hypotheses omlfh1.b B=BaseK
omlfh1.j ˙=joinK
omlfh1.m ˙=meetK
omlfh1.c C=cmK
Assertion omlfh3N KOMLXBYBZBXCYXCZX˙Y˙Z=X˙Y˙X˙Z

Proof

Step Hyp Ref Expression
1 omlfh1.b B=BaseK
2 omlfh1.j ˙=joinK
3 omlfh1.m ˙=meetK
4 omlfh1.c C=cmK
5 eqid ocK=ocK
6 1 5 4 cmt4N KOMLXBYBXCYocKXCocKY
7 6 3adant3r3 KOMLXBYBZBXCYocKXCocKY
8 1 5 4 cmt4N KOMLXBZBXCZocKXCocKZ
9 8 3adant3r2 KOMLXBYBZBXCZocKXCocKZ
10 7 9 anbi12d KOMLXBYBZBXCYXCZocKXCocKYocKXCocKZ
11 simpl KOMLXBYBZBKOML
12 omlop KOMLKOP
13 12 adantr KOMLXBYBZBKOP
14 simpr1 KOMLXBYBZBXB
15 1 5 opoccl KOPXBocKXB
16 13 14 15 syl2anc KOMLXBYBZBocKXB
17 simpr2 KOMLXBYBZBYB
18 1 5 opoccl KOPYBocKYB
19 13 17 18 syl2anc KOMLXBYBZBocKYB
20 simpr3 KOMLXBYBZBZB
21 1 5 opoccl KOPZBocKZB
22 13 20 21 syl2anc KOMLXBYBZBocKZB
23 16 19 22 3jca KOMLXBYBZBocKXBocKYBocKZB
24 1 2 3 4 omlfh1N KOMLocKXBocKYBocKZBocKXCocKYocKXCocKZocKX˙ocKY˙ocKZ=ocKX˙ocKY˙ocKX˙ocKZ
25 24 fveq2d KOMLocKXBocKYBocKZBocKXCocKYocKXCocKZocKocKX˙ocKY˙ocKZ=ocKocKX˙ocKY˙ocKX˙ocKZ
26 25 3exp KOMLocKXBocKYBocKZBocKXCocKYocKXCocKZocKocKX˙ocKY˙ocKZ=ocKocKX˙ocKY˙ocKX˙ocKZ
27 11 23 26 sylc KOMLXBYBZBocKXCocKYocKXCocKZocKocKX˙ocKY˙ocKZ=ocKocKX˙ocKY˙ocKX˙ocKZ
28 10 27 sylbid KOMLXBYBZBXCYXCZocKocKX˙ocKY˙ocKZ=ocKocKX˙ocKY˙ocKX˙ocKZ
29 28 3impia KOMLXBYBZBXCYXCZocKocKX˙ocKY˙ocKZ=ocKocKX˙ocKY˙ocKX˙ocKZ
30 omlol KOMLKOL
31 30 adantr KOMLXBYBZBKOL
32 omllat KOMLKLat
33 32 adantr KOMLXBYBZBKLat
34 1 2 latjcl KLatocKYBocKZBocKY˙ocKZB
35 33 19 22 34 syl3anc KOMLXBYBZBocKY˙ocKZB
36 1 2 3 5 oldmm2 KOLXBocKY˙ocKZBocKocKX˙ocKY˙ocKZ=X˙ocKocKY˙ocKZ
37 31 14 35 36 syl3anc KOMLXBYBZBocKocKX˙ocKY˙ocKZ=X˙ocKocKY˙ocKZ
38 1 2 3 5 oldmj4 KOLYBZBocKocKY˙ocKZ=Y˙Z
39 31 17 20 38 syl3anc KOMLXBYBZBocKocKY˙ocKZ=Y˙Z
40 39 oveq2d KOMLXBYBZBX˙ocKocKY˙ocKZ=X˙Y˙Z
41 37 40 eqtr2d KOMLXBYBZBX˙Y˙Z=ocKocKX˙ocKY˙ocKZ
42 41 3adant3 KOMLXBYBZBXCYXCZX˙Y˙Z=ocKocKX˙ocKY˙ocKZ
43 1 3 latmcl KLatocKXBocKYBocKX˙ocKYB
44 33 16 19 43 syl3anc KOMLXBYBZBocKX˙ocKYB
45 1 3 latmcl KLatocKXBocKZBocKX˙ocKZB
46 33 16 22 45 syl3anc KOMLXBYBZBocKX˙ocKZB
47 1 2 3 5 oldmj1 KOLocKX˙ocKYBocKX˙ocKZBocKocKX˙ocKY˙ocKX˙ocKZ=ocKocKX˙ocKY˙ocKocKX˙ocKZ
48 31 44 46 47 syl3anc KOMLXBYBZBocKocKX˙ocKY˙ocKX˙ocKZ=ocKocKX˙ocKY˙ocKocKX˙ocKZ
49 1 2 3 5 oldmm4 KOLXBYBocKocKX˙ocKY=X˙Y
50 31 14 17 49 syl3anc KOMLXBYBZBocKocKX˙ocKY=X˙Y
51 1 2 3 5 oldmm4 KOLXBZBocKocKX˙ocKZ=X˙Z
52 31 14 20 51 syl3anc KOMLXBYBZBocKocKX˙ocKZ=X˙Z
53 50 52 oveq12d KOMLXBYBZBocKocKX˙ocKY˙ocKocKX˙ocKZ=X˙Y˙X˙Z
54 48 53 eqtr2d KOMLXBYBZBX˙Y˙X˙Z=ocKocKX˙ocKY˙ocKX˙ocKZ
55 54 3adant3 KOMLXBYBZBXCYXCZX˙Y˙X˙Z=ocKocKX˙ocKY˙ocKX˙ocKZ
56 29 42 55 3eqtr4d KOMLXBYBZBXCYXCZX˙Y˙Z=X˙Y˙X˙Z