Description: Foulis-Holland Theorem, part 3. Dual of omlfh1N . (Contributed by NM, 8-Nov-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | omlfh1.b | |
|
omlfh1.j | |
||
omlfh1.m | |
||
omlfh1.c | |
||
Assertion | omlfh3N | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omlfh1.b | |
|
2 | omlfh1.j | |
|
3 | omlfh1.m | |
|
4 | omlfh1.c | |
|
5 | eqid | |
|
6 | 1 5 4 | cmt4N | |
7 | 6 | 3adant3r3 | |
8 | 1 5 4 | cmt4N | |
9 | 8 | 3adant3r2 | |
10 | 7 9 | anbi12d | |
11 | simpl | |
|
12 | omlop | |
|
13 | 12 | adantr | |
14 | simpr1 | |
|
15 | 1 5 | opoccl | |
16 | 13 14 15 | syl2anc | |
17 | simpr2 | |
|
18 | 1 5 | opoccl | |
19 | 13 17 18 | syl2anc | |
20 | simpr3 | |
|
21 | 1 5 | opoccl | |
22 | 13 20 21 | syl2anc | |
23 | 16 19 22 | 3jca | |
24 | 1 2 3 4 | omlfh1N | |
25 | 24 | fveq2d | |
26 | 25 | 3exp | |
27 | 11 23 26 | sylc | |
28 | 10 27 | sylbid | |
29 | 28 | 3impia | |
30 | omlol | |
|
31 | 30 | adantr | |
32 | omllat | |
|
33 | 32 | adantr | |
34 | 1 2 | latjcl | |
35 | 33 19 22 34 | syl3anc | |
36 | 1 2 3 5 | oldmm2 | |
37 | 31 14 35 36 | syl3anc | |
38 | 1 2 3 5 | oldmj4 | |
39 | 31 17 20 38 | syl3anc | |
40 | 39 | oveq2d | |
41 | 37 40 | eqtr2d | |
42 | 41 | 3adant3 | |
43 | 1 3 | latmcl | |
44 | 33 16 19 43 | syl3anc | |
45 | 1 3 | latmcl | |
46 | 33 16 22 45 | syl3anc | |
47 | 1 2 3 5 | oldmj1 | |
48 | 31 44 46 47 | syl3anc | |
49 | 1 2 3 5 | oldmm4 | |
50 | 31 14 17 49 | syl3anc | |
51 | 1 2 3 5 | oldmm4 | |
52 | 31 14 20 51 | syl3anc | |
53 | 50 52 | oveq12d | |
54 | 48 53 | eqtr2d | |
55 | 54 | 3adant3 | |
56 | 29 42 55 | 3eqtr4d | |