| Step |
Hyp |
Ref |
Expression |
| 1 |
|
omlfh1.b |
|- B = ( Base ` K ) |
| 2 |
|
omlfh1.j |
|- .\/ = ( join ` K ) |
| 3 |
|
omlfh1.m |
|- ./\ = ( meet ` K ) |
| 4 |
|
omlfh1.c |
|- C = ( cm ` K ) |
| 5 |
|
eqid |
|- ( oc ` K ) = ( oc ` K ) |
| 6 |
1 5 4
|
cmt4N |
|- ( ( K e. OML /\ X e. B /\ Y e. B ) -> ( X C Y <-> ( ( oc ` K ) ` X ) C ( ( oc ` K ) ` Y ) ) ) |
| 7 |
6
|
3adant3r3 |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X C Y <-> ( ( oc ` K ) ` X ) C ( ( oc ` K ) ` Y ) ) ) |
| 8 |
1 5 4
|
cmt4N |
|- ( ( K e. OML /\ X e. B /\ Z e. B ) -> ( X C Z <-> ( ( oc ` K ) ` X ) C ( ( oc ` K ) ` Z ) ) ) |
| 9 |
8
|
3adant3r2 |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X C Z <-> ( ( oc ` K ) ` X ) C ( ( oc ` K ) ` Z ) ) ) |
| 10 |
7 9
|
anbi12d |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X C Y /\ X C Z ) <-> ( ( ( oc ` K ) ` X ) C ( ( oc ` K ) ` Y ) /\ ( ( oc ` K ) ` X ) C ( ( oc ` K ) ` Z ) ) ) ) |
| 11 |
|
simpl |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> K e. OML ) |
| 12 |
|
omlop |
|- ( K e. OML -> K e. OP ) |
| 13 |
12
|
adantr |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> K e. OP ) |
| 14 |
|
simpr1 |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> X e. B ) |
| 15 |
1 5
|
opoccl |
|- ( ( K e. OP /\ X e. B ) -> ( ( oc ` K ) ` X ) e. B ) |
| 16 |
13 14 15
|
syl2anc |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( oc ` K ) ` X ) e. B ) |
| 17 |
|
simpr2 |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> Y e. B ) |
| 18 |
1 5
|
opoccl |
|- ( ( K e. OP /\ Y e. B ) -> ( ( oc ` K ) ` Y ) e. B ) |
| 19 |
13 17 18
|
syl2anc |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( oc ` K ) ` Y ) e. B ) |
| 20 |
|
simpr3 |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> Z e. B ) |
| 21 |
1 5
|
opoccl |
|- ( ( K e. OP /\ Z e. B ) -> ( ( oc ` K ) ` Z ) e. B ) |
| 22 |
13 20 21
|
syl2anc |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( oc ` K ) ` Z ) e. B ) |
| 23 |
16 19 22
|
3jca |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( ( oc ` K ) ` X ) e. B /\ ( ( oc ` K ) ` Y ) e. B /\ ( ( oc ` K ) ` Z ) e. B ) ) |
| 24 |
1 2 3 4
|
omlfh1N |
|- ( ( K e. OML /\ ( ( ( oc ` K ) ` X ) e. B /\ ( ( oc ` K ) ` Y ) e. B /\ ( ( oc ` K ) ` Z ) e. B ) /\ ( ( ( oc ` K ) ` X ) C ( ( oc ` K ) ` Y ) /\ ( ( oc ` K ) ` X ) C ( ( oc ` K ) ` Z ) ) ) -> ( ( ( oc ` K ) ` X ) ./\ ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` Z ) ) ) = ( ( ( ( oc ` K ) ` X ) ./\ ( ( oc ` K ) ` Y ) ) .\/ ( ( ( oc ` K ) ` X ) ./\ ( ( oc ` K ) ` Z ) ) ) ) |
| 25 |
24
|
fveq2d |
|- ( ( K e. OML /\ ( ( ( oc ` K ) ` X ) e. B /\ ( ( oc ` K ) ` Y ) e. B /\ ( ( oc ` K ) ` Z ) e. B ) /\ ( ( ( oc ` K ) ` X ) C ( ( oc ` K ) ` Y ) /\ ( ( oc ` K ) ` X ) C ( ( oc ` K ) ` Z ) ) ) -> ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ./\ ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` Z ) ) ) ) = ( ( oc ` K ) ` ( ( ( ( oc ` K ) ` X ) ./\ ( ( oc ` K ) ` Y ) ) .\/ ( ( ( oc ` K ) ` X ) ./\ ( ( oc ` K ) ` Z ) ) ) ) ) |
| 26 |
25
|
3exp |
|- ( K e. OML -> ( ( ( ( oc ` K ) ` X ) e. B /\ ( ( oc ` K ) ` Y ) e. B /\ ( ( oc ` K ) ` Z ) e. B ) -> ( ( ( ( oc ` K ) ` X ) C ( ( oc ` K ) ` Y ) /\ ( ( oc ` K ) ` X ) C ( ( oc ` K ) ` Z ) ) -> ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ./\ ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` Z ) ) ) ) = ( ( oc ` K ) ` ( ( ( ( oc ` K ) ` X ) ./\ ( ( oc ` K ) ` Y ) ) .\/ ( ( ( oc ` K ) ` X ) ./\ ( ( oc ` K ) ` Z ) ) ) ) ) ) ) |
| 27 |
11 23 26
|
sylc |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( ( ( oc ` K ) ` X ) C ( ( oc ` K ) ` Y ) /\ ( ( oc ` K ) ` X ) C ( ( oc ` K ) ` Z ) ) -> ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ./\ ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` Z ) ) ) ) = ( ( oc ` K ) ` ( ( ( ( oc ` K ) ` X ) ./\ ( ( oc ` K ) ` Y ) ) .\/ ( ( ( oc ` K ) ` X ) ./\ ( ( oc ` K ) ` Z ) ) ) ) ) ) |
| 28 |
10 27
|
sylbid |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X C Y /\ X C Z ) -> ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ./\ ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` Z ) ) ) ) = ( ( oc ` K ) ` ( ( ( ( oc ` K ) ` X ) ./\ ( ( oc ` K ) ` Y ) ) .\/ ( ( ( oc ` K ) ` X ) ./\ ( ( oc ` K ) ` Z ) ) ) ) ) ) |
| 29 |
28
|
3impia |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ ( X C Y /\ X C Z ) ) -> ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ./\ ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` Z ) ) ) ) = ( ( oc ` K ) ` ( ( ( ( oc ` K ) ` X ) ./\ ( ( oc ` K ) ` Y ) ) .\/ ( ( ( oc ` K ) ` X ) ./\ ( ( oc ` K ) ` Z ) ) ) ) ) |
| 30 |
|
omlol |
|- ( K e. OML -> K e. OL ) |
| 31 |
30
|
adantr |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> K e. OL ) |
| 32 |
|
omllat |
|- ( K e. OML -> K e. Lat ) |
| 33 |
32
|
adantr |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> K e. Lat ) |
| 34 |
1 2
|
latjcl |
|- ( ( K e. Lat /\ ( ( oc ` K ) ` Y ) e. B /\ ( ( oc ` K ) ` Z ) e. B ) -> ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` Z ) ) e. B ) |
| 35 |
33 19 22 34
|
syl3anc |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` Z ) ) e. B ) |
| 36 |
1 2 3 5
|
oldmm2 |
|- ( ( K e. OL /\ X e. B /\ ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` Z ) ) e. B ) -> ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ./\ ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` Z ) ) ) ) = ( X .\/ ( ( oc ` K ) ` ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` Z ) ) ) ) ) |
| 37 |
31 14 35 36
|
syl3anc |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ./\ ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` Z ) ) ) ) = ( X .\/ ( ( oc ` K ) ` ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` Z ) ) ) ) ) |
| 38 |
1 2 3 5
|
oldmj4 |
|- ( ( K e. OL /\ Y e. B /\ Z e. B ) -> ( ( oc ` K ) ` ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` Z ) ) ) = ( Y ./\ Z ) ) |
| 39 |
31 17 20 38
|
syl3anc |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( oc ` K ) ` ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` Z ) ) ) = ( Y ./\ Z ) ) |
| 40 |
39
|
oveq2d |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X .\/ ( ( oc ` K ) ` ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` Z ) ) ) ) = ( X .\/ ( Y ./\ Z ) ) ) |
| 41 |
37 40
|
eqtr2d |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X .\/ ( Y ./\ Z ) ) = ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ./\ ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` Z ) ) ) ) ) |
| 42 |
41
|
3adant3 |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ ( X C Y /\ X C Z ) ) -> ( X .\/ ( Y ./\ Z ) ) = ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ./\ ( ( ( oc ` K ) ` Y ) .\/ ( ( oc ` K ) ` Z ) ) ) ) ) |
| 43 |
1 3
|
latmcl |
|- ( ( K e. Lat /\ ( ( oc ` K ) ` X ) e. B /\ ( ( oc ` K ) ` Y ) e. B ) -> ( ( ( oc ` K ) ` X ) ./\ ( ( oc ` K ) ` Y ) ) e. B ) |
| 44 |
33 16 19 43
|
syl3anc |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( ( oc ` K ) ` X ) ./\ ( ( oc ` K ) ` Y ) ) e. B ) |
| 45 |
1 3
|
latmcl |
|- ( ( K e. Lat /\ ( ( oc ` K ) ` X ) e. B /\ ( ( oc ` K ) ` Z ) e. B ) -> ( ( ( oc ` K ) ` X ) ./\ ( ( oc ` K ) ` Z ) ) e. B ) |
| 46 |
33 16 22 45
|
syl3anc |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( ( oc ` K ) ` X ) ./\ ( ( oc ` K ) ` Z ) ) e. B ) |
| 47 |
1 2 3 5
|
oldmj1 |
|- ( ( K e. OL /\ ( ( ( oc ` K ) ` X ) ./\ ( ( oc ` K ) ` Y ) ) e. B /\ ( ( ( oc ` K ) ` X ) ./\ ( ( oc ` K ) ` Z ) ) e. B ) -> ( ( oc ` K ) ` ( ( ( ( oc ` K ) ` X ) ./\ ( ( oc ` K ) ` Y ) ) .\/ ( ( ( oc ` K ) ` X ) ./\ ( ( oc ` K ) ` Z ) ) ) ) = ( ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ./\ ( ( oc ` K ) ` Y ) ) ) ./\ ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ./\ ( ( oc ` K ) ` Z ) ) ) ) ) |
| 48 |
31 44 46 47
|
syl3anc |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( oc ` K ) ` ( ( ( ( oc ` K ) ` X ) ./\ ( ( oc ` K ) ` Y ) ) .\/ ( ( ( oc ` K ) ` X ) ./\ ( ( oc ` K ) ` Z ) ) ) ) = ( ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ./\ ( ( oc ` K ) ` Y ) ) ) ./\ ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ./\ ( ( oc ` K ) ` Z ) ) ) ) ) |
| 49 |
1 2 3 5
|
oldmm4 |
|- ( ( K e. OL /\ X e. B /\ Y e. B ) -> ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ./\ ( ( oc ` K ) ` Y ) ) ) = ( X .\/ Y ) ) |
| 50 |
31 14 17 49
|
syl3anc |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ./\ ( ( oc ` K ) ` Y ) ) ) = ( X .\/ Y ) ) |
| 51 |
1 2 3 5
|
oldmm4 |
|- ( ( K e. OL /\ X e. B /\ Z e. B ) -> ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ./\ ( ( oc ` K ) ` Z ) ) ) = ( X .\/ Z ) ) |
| 52 |
31 14 20 51
|
syl3anc |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ./\ ( ( oc ` K ) ` Z ) ) ) = ( X .\/ Z ) ) |
| 53 |
50 52
|
oveq12d |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ./\ ( ( oc ` K ) ` Y ) ) ) ./\ ( ( oc ` K ) ` ( ( ( oc ` K ) ` X ) ./\ ( ( oc ` K ) ` Z ) ) ) ) = ( ( X .\/ Y ) ./\ ( X .\/ Z ) ) ) |
| 54 |
48 53
|
eqtr2d |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .\/ Y ) ./\ ( X .\/ Z ) ) = ( ( oc ` K ) ` ( ( ( ( oc ` K ) ` X ) ./\ ( ( oc ` K ) ` Y ) ) .\/ ( ( ( oc ` K ) ` X ) ./\ ( ( oc ` K ) ` Z ) ) ) ) ) |
| 55 |
54
|
3adant3 |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ ( X C Y /\ X C Z ) ) -> ( ( X .\/ Y ) ./\ ( X .\/ Z ) ) = ( ( oc ` K ) ` ( ( ( ( oc ` K ) ` X ) ./\ ( ( oc ` K ) ` Y ) ) .\/ ( ( ( oc ` K ) ` X ) ./\ ( ( oc ` K ) ` Z ) ) ) ) ) |
| 56 |
29 42 55
|
3eqtr4d |
|- ( ( K e. OML /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ ( X C Y /\ X C Z ) ) -> ( X .\/ ( Y ./\ Z ) ) = ( ( X .\/ Y ) ./\ ( X .\/ Z ) ) ) |