Description: Subspace form of orthomodular law in the Hilbert lattice. Compare the orthomodular law in Theorem 2(ii) of Kalmbach p. 22. (Contributed by NM, 14-Oct-1999) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | omls.1 | |
|
omls.2 | |
||
Assertion | omlsi | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omls.1 | |
|
2 | omls.2 | |
|
3 | eqeq1 | |
|
4 | eqeq2 | |
|
5 | h0elch | |
|
6 | 1 5 | ifcli | |
7 | h0elsh | |
|
8 | 2 7 | ifcli | |
9 | sseq1 | |
|
10 | fveq2 | |
|
11 | 10 | ineq2d | |
12 | 11 | eqeq1d | |
13 | 9 12 | anbi12d | |
14 | sseq2 | |
|
15 | ineq1 | |
|
16 | 15 | eqeq1d | |
17 | 14 16 | anbi12d | |
18 | sseq1 | |
|
19 | fveq2 | |
|
20 | 19 | ineq2d | |
21 | 20 | eqeq1d | |
22 | 18 21 | anbi12d | |
23 | sseq2 | |
|
24 | ineq1 | |
|
25 | 24 | eqeq1d | |
26 | 23 25 | anbi12d | |
27 | ssid | |
|
28 | ocin | |
|
29 | 7 28 | ax-mp | |
30 | 27 29 | pm3.2i | |
31 | 13 17 22 26 30 | elimhyp2v | |
32 | 31 | simpli | |
33 | 31 | simpri | |
34 | 6 8 32 33 | omlsii | |
35 | 3 4 34 | dedth2v | |