Metamath Proof Explorer


Theorem omlsi

Description: Subspace form of orthomodular law in the Hilbert lattice. Compare the orthomodular law in Theorem 2(ii) of Kalmbach p. 22. (Contributed by NM, 14-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses omls.1 AC
omls.2 BS
Assertion omlsi ABBA=0A=B

Proof

Step Hyp Ref Expression
1 omls.1 AC
2 omls.2 BS
3 eqeq1 A=ifABBA=0A0A=BifABBA=0A0=B
4 eqeq2 B=ifABBA=0B0ifABBA=0A0=BifABBA=0A0=ifABBA=0B0
5 h0elch 0C
6 1 5 ifcli ifABBA=0A0C
7 h0elsh 0S
8 2 7 ifcli ifABBA=0B0S
9 sseq1 A=ifABBA=0A0ABifABBA=0A0B
10 fveq2 A=ifABBA=0A0A=ifABBA=0A0
11 10 ineq2d A=ifABBA=0A0BA=BifABBA=0A0
12 11 eqeq1d A=ifABBA=0A0BA=0BifABBA=0A0=0
13 9 12 anbi12d A=ifABBA=0A0ABBA=0ifABBA=0A0BBifABBA=0A0=0
14 sseq2 B=ifABBA=0B0ifABBA=0A0BifABBA=0A0ifABBA=0B0
15 ineq1 B=ifABBA=0B0BifABBA=0A0=ifABBA=0B0ifABBA=0A0
16 15 eqeq1d B=ifABBA=0B0BifABBA=0A0=0ifABBA=0B0ifABBA=0A0=0
17 14 16 anbi12d B=ifABBA=0B0ifABBA=0A0BBifABBA=0A0=0ifABBA=0A0ifABBA=0B0ifABBA=0B0ifABBA=0A0=0
18 sseq1 0=ifABBA=0A000ifABBA=0A00
19 fveq2 0=ifABBA=0A00=ifABBA=0A0
20 19 ineq2d 0=ifABBA=0A000=0ifABBA=0A0
21 20 eqeq1d 0=ifABBA=0A000=00ifABBA=0A0=0
22 18 21 anbi12d 0=ifABBA=0A00000=0ifABBA=0A000ifABBA=0A0=0
23 sseq2 0=ifABBA=0B0ifABBA=0A00ifABBA=0A0ifABBA=0B0
24 ineq1 0=ifABBA=0B00ifABBA=0A0=ifABBA=0B0ifABBA=0A0
25 24 eqeq1d 0=ifABBA=0B00ifABBA=0A0=0ifABBA=0B0ifABBA=0A0=0
26 23 25 anbi12d 0=ifABBA=0B0ifABBA=0A000ifABBA=0A0=0ifABBA=0A0ifABBA=0B0ifABBA=0B0ifABBA=0A0=0
27 ssid 00
28 ocin 0S00=0
29 7 28 ax-mp 00=0
30 27 29 pm3.2i 0000=0
31 13 17 22 26 30 elimhyp2v ifABBA=0A0ifABBA=0B0ifABBA=0B0ifABBA=0A0=0
32 31 simpli ifABBA=0A0ifABBA=0B0
33 31 simpri ifABBA=0B0ifABBA=0A0=0
34 6 8 32 33 omlsii ifABBA=0A0=ifABBA=0B0
35 3 4 34 dedth2v ABBA=0A=B