Metamath Proof Explorer


Theorem omscl

Description: A closure lemma for the constructed outer measure. (Contributed by Thierry Arnoux, 17-Sep-2019)

Ref Expression
Assertion omscl Q V R : Q 0 +∞ A 𝒫 dom R ran x z 𝒫 dom R | A z z ω * y x R y 0 +∞

Proof

Step Hyp Ref Expression
1 vex x V
2 simp2 Q V R : Q 0 +∞ A 𝒫 dom R R : Q 0 +∞
3 2 ad2antrr Q V R : Q 0 +∞ A 𝒫 dom R x z 𝒫 dom R | A z z ω y x R : Q 0 +∞
4 ssrab2 z 𝒫 dom R | A z z ω 𝒫 dom R
5 simpr Q V R : Q 0 +∞ A 𝒫 dom R x z 𝒫 dom R | A z z ω x z 𝒫 dom R | A z z ω
6 4 5 sseldi Q V R : Q 0 +∞ A 𝒫 dom R x z 𝒫 dom R | A z z ω x 𝒫 dom R
7 fdm R : Q 0 +∞ dom R = Q
8 7 pweqd R : Q 0 +∞ 𝒫 dom R = 𝒫 Q
9 2 8 syl Q V R : Q 0 +∞ A 𝒫 dom R 𝒫 dom R = 𝒫 Q
10 9 adantr Q V R : Q 0 +∞ A 𝒫 dom R x z 𝒫 dom R | A z z ω 𝒫 dom R = 𝒫 Q
11 6 10 eleqtrd Q V R : Q 0 +∞ A 𝒫 dom R x z 𝒫 dom R | A z z ω x 𝒫 Q
12 elpwi x 𝒫 Q x Q
13 11 12 syl Q V R : Q 0 +∞ A 𝒫 dom R x z 𝒫 dom R | A z z ω x Q
14 13 sselda Q V R : Q 0 +∞ A 𝒫 dom R x z 𝒫 dom R | A z z ω y x y Q
15 3 14 ffvelrnd Q V R : Q 0 +∞ A 𝒫 dom R x z 𝒫 dom R | A z z ω y x R y 0 +∞
16 15 ralrimiva Q V R : Q 0 +∞ A 𝒫 dom R x z 𝒫 dom R | A z z ω y x R y 0 +∞
17 nfcv _ y x
18 17 esumcl x V y x R y 0 +∞ * y x R y 0 +∞
19 1 16 18 sylancr Q V R : Q 0 +∞ A 𝒫 dom R x z 𝒫 dom R | A z z ω * y x R y 0 +∞
20 19 ralrimiva Q V R : Q 0 +∞ A 𝒫 dom R x z 𝒫 dom R | A z z ω * y x R y 0 +∞
21 eqid x z 𝒫 dom R | A z z ω * y x R y = x z 𝒫 dom R | A z z ω * y x R y
22 21 rnmptss x z 𝒫 dom R | A z z ω * y x R y 0 +∞ ran x z 𝒫 dom R | A z z ω * y x R y 0 +∞
23 20 22 syl Q V R : Q 0 +∞ A 𝒫 dom R ran x z 𝒫 dom R | A z z ω * y x R y 0 +∞