Metamath Proof Explorer


Theorem onexlimgt

Description: For any ordinal, there is always a larger limit ordinal. (Contributed by RP, 1-Feb-2025)

Ref Expression
Assertion onexlimgt AOnxOnLimxAx

Proof

Step Hyp Ref Expression
1 omelon ωOn
2 onun2 AOnωOnAωOn
3 1 2 mpan2 AOnAωOn
4 onexomgt AωOnaOnAωω𝑜a
5 3 4 syl AOnaOnAωω𝑜a
6 simp2 AOnaOnAωω𝑜aaOn
7 omcl ωOnaOnω𝑜aOn
8 1 6 7 sylancr AOnaOnAωω𝑜aω𝑜aOn
9 noel ¬Aω
10 oveq2 a=ω𝑜a=ω𝑜
11 om0 ωOnω𝑜=
12 1 11 ax-mp ω𝑜=
13 10 12 eqtrdi a=ω𝑜a=
14 13 eleq2d a=Aωω𝑜aAω
15 14 notbid a=¬Aωω𝑜a¬Aω
16 15 adantl AOnaOna=¬Aωω𝑜a¬Aω
17 9 16 mpbiri AOnaOna=¬Aωω𝑜a
18 17 pm2.21d AOnaOna=Aωω𝑜aLimω𝑜a
19 18 ex AOnaOna=Aωω𝑜aLimω𝑜a
20 19 com23 AOnaOnAωω𝑜aa=Limω𝑜a
21 20 3impia AOnaOnAωω𝑜aa=Limω𝑜a
22 limom Limω
23 1 22 pm3.2i ωOnLimω
24 6 23 jctir AOnaOnAωω𝑜aaOnωOnLimω
25 omlimcl2 aOnωOnLimωaLimω𝑜a
26 24 25 sylan AOnaOnAωω𝑜aaLimω𝑜a
27 26 ex AOnaOnAωω𝑜aaLimω𝑜a
28 on0eqel aOna=a
29 6 28 syl AOnaOnAωω𝑜aa=a
30 21 27 29 mpjaod AOnaOnAωω𝑜aLimω𝑜a
31 simp1 AOnaOnAωω𝑜aAOn
32 31 8 jca AOnaOnAωω𝑜aAOnω𝑜aOn
33 simp3 AOnaOnAωω𝑜aAωω𝑜a
34 ssun1 AAω
35 33 34 jctil AOnaOnAωω𝑜aAAωAωω𝑜a
36 ontr2 AOnω𝑜aOnAAωAωω𝑜aAω𝑜a
37 32 35 36 sylc AOnaOnAωω𝑜aAω𝑜a
38 limeq x=ω𝑜aLimxLimω𝑜a
39 eleq2 x=ω𝑜aAxAω𝑜a
40 38 39 anbi12d x=ω𝑜aLimxAxLimω𝑜aAω𝑜a
41 40 rspcev ω𝑜aOnLimω𝑜aAω𝑜axOnLimxAx
42 8 30 37 41 syl12anc AOnaOnAωω𝑜axOnLimxAx
43 42 rexlimdv3a AOnaOnAωω𝑜axOnLimxAx
44 5 43 mpd AOnxOnLimxAx