Description: For any ordinal, there is always a larger limit ordinal. (Contributed by RP, 1-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | onexlimgt | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omelon | |
|
2 | onun2 | |
|
3 | 1 2 | mpan2 | |
4 | onexomgt | |
|
5 | 3 4 | syl | |
6 | simp2 | |
|
7 | omcl | |
|
8 | 1 6 7 | sylancr | |
9 | noel | |
|
10 | oveq2 | |
|
11 | om0 | |
|
12 | 1 11 | ax-mp | |
13 | 10 12 | eqtrdi | |
14 | 13 | eleq2d | |
15 | 14 | notbid | |
16 | 15 | adantl | |
17 | 9 16 | mpbiri | |
18 | 17 | pm2.21d | |
19 | 18 | ex | |
20 | 19 | com23 | |
21 | 20 | 3impia | |
22 | limom | |
|
23 | 1 22 | pm3.2i | |
24 | 6 23 | jctir | |
25 | omlimcl2 | |
|
26 | 24 25 | sylan | |
27 | 26 | ex | |
28 | on0eqel | |
|
29 | 6 28 | syl | |
30 | 21 27 29 | mpjaod | |
31 | simp1 | |
|
32 | 31 8 | jca | |
33 | simp3 | |
|
34 | ssun1 | |
|
35 | 33 34 | jctil | |
36 | ontr2 | |
|
37 | 32 35 36 | sylc | |
38 | limeq | |
|
39 | eleq2 | |
|
40 | 38 39 | anbi12d | |
41 | 40 | rspcev | |
42 | 8 30 37 41 | syl12anc | |
43 | 42 | rexlimdv3a | |
44 | 5 43 | mpd | |