Description: The ordinal class is well-founded. This proof does not require the axiom of regularity. This lemma is used in ordon (through epweon ) in order to eliminate the need for the axiom of regularity. (Contributed by NM, 17-May-1994)
Ref | Expression | ||
---|---|---|---|
Assertion | onfr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfepfr | |
|
2 | n0 | |
|
3 | ineq2 | |
|
4 | 3 | eqeq1d | |
5 | 4 | rspcev | |
6 | 5 | adantll | |
7 | inss1 | |
|
8 | ssel2 | |
|
9 | eloni | |
|
10 | ordfr | |
|
11 | 8 9 10 | 3syl | |
12 | inss2 | |
|
13 | vex | |
|
14 | 13 | inex1 | |
15 | 14 | epfrc | |
16 | 12 15 | mp3an2 | |
17 | 11 16 | sylan | |
18 | inass | |
|
19 | 8 9 | syl | |
20 | elinel2 | |
|
21 | ordelss | |
|
22 | 19 20 21 | syl2an | |
23 | sseqin2 | |
|
24 | 22 23 | sylib | |
25 | 24 | ineq2d | |
26 | 18 25 | eqtrid | |
27 | 26 | eqeq1d | |
28 | 27 | rexbidva | |
29 | 28 | adantr | |
30 | 17 29 | mpbid | |
31 | ssrexv | |
|
32 | 7 30 31 | mpsyl | |
33 | 6 32 | pm2.61dane | |
34 | 33 | ex | |
35 | 34 | exlimdv | |
36 | 2 35 | biimtrid | |
37 | 36 | imp | |
38 | 1 37 | mpgbir | |