Metamath Proof Explorer


Theorem onfr

Description: The ordinal class is well-founded. This proof does not require the axiom of regularity. This lemma is used in ordon (through epweon ) in order to eliminate the need for the axiom of regularity. (Contributed by NM, 17-May-1994)

Ref Expression
Assertion onfr EFrOn

Proof

Step Hyp Ref Expression
1 dfepfr EFrOnxxOnxzxxz=
2 n0 xyyx
3 ineq2 z=yxz=xy
4 3 eqeq1d z=yxz=xy=
5 4 rspcev yxxy=zxxz=
6 5 adantll xOnyxxy=zxxz=
7 inss1 xyx
8 ssel2 xOnyxyOn
9 eloni yOnOrdy
10 ordfr OrdyEFry
11 8 9 10 3syl xOnyxEFry
12 inss2 xyy
13 vex xV
14 13 inex1 xyV
15 14 epfrc EFryxyyxyzxyxyz=
16 12 15 mp3an2 EFryxyzxyxyz=
17 11 16 sylan xOnyxxyzxyxyz=
18 inass xyz=xyz
19 8 9 syl xOnyxOrdy
20 elinel2 zxyzy
21 ordelss Ordyzyzy
22 19 20 21 syl2an xOnyxzxyzy
23 sseqin2 zyyz=z
24 22 23 sylib xOnyxzxyyz=z
25 24 ineq2d xOnyxzxyxyz=xz
26 18 25 eqtrid xOnyxzxyxyz=xz
27 26 eqeq1d xOnyxzxyxyz=xz=
28 27 rexbidva xOnyxzxyxyz=zxyxz=
29 28 adantr xOnyxxyzxyxyz=zxyxz=
30 17 29 mpbid xOnyxxyzxyxz=
31 ssrexv xyxzxyxz=zxxz=
32 7 30 31 mpsyl xOnyxxyzxxz=
33 6 32 pm2.61dane xOnyxzxxz=
34 33 ex xOnyxzxxz=
35 34 exlimdv xOnyyxzxxz=
36 2 35 biimtrid xOnxzxxz=
37 36 imp xOnxzxxz=
38 1 37 mpgbir EFrOn