| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfepfr |  | 
						
							| 2 |  | n0 |  | 
						
							| 3 |  | ineq2 |  | 
						
							| 4 | 3 | eqeq1d |  | 
						
							| 5 | 4 | rspcev |  | 
						
							| 6 | 5 | adantll |  | 
						
							| 7 |  | inss1 |  | 
						
							| 8 |  | ssel2 |  | 
						
							| 9 |  | eloni |  | 
						
							| 10 |  | ordfr |  | 
						
							| 11 | 8 9 10 | 3syl |  | 
						
							| 12 |  | inss2 |  | 
						
							| 13 |  | vex |  | 
						
							| 14 | 13 | inex1 |  | 
						
							| 15 | 14 | epfrc |  | 
						
							| 16 | 12 15 | mp3an2 |  | 
						
							| 17 | 11 16 | sylan |  | 
						
							| 18 |  | inass |  | 
						
							| 19 | 8 9 | syl |  | 
						
							| 20 |  | elinel2 |  | 
						
							| 21 |  | ordelss |  | 
						
							| 22 | 19 20 21 | syl2an |  | 
						
							| 23 |  | sseqin2 |  | 
						
							| 24 | 22 23 | sylib |  | 
						
							| 25 | 24 | ineq2d |  | 
						
							| 26 | 18 25 | eqtrid |  | 
						
							| 27 | 26 | eqeq1d |  | 
						
							| 28 | 27 | rexbidva |  | 
						
							| 29 | 28 | adantr |  | 
						
							| 30 | 17 29 | mpbid |  | 
						
							| 31 |  | ssrexv |  | 
						
							| 32 | 7 30 31 | mpsyl |  | 
						
							| 33 | 6 32 | pm2.61dane |  | 
						
							| 34 | 33 | ex |  | 
						
							| 35 | 34 | exlimdv |  | 
						
							| 36 | 2 35 | biimtrid |  | 
						
							| 37 | 36 | imp |  | 
						
							| 38 | 1 37 | mpgbir |  |