| Step |
Hyp |
Ref |
Expression |
| 1 |
|
onov0suclim.0 |
|
| 2 |
|
onov0suclim.suc |
|
| 3 |
|
onov0suclim.lim |
|
| 4 |
|
eloni |
|
| 5 |
|
orduniorsuc |
|
| 6 |
|
unizlim |
|
| 7 |
6
|
biimpd |
|
| 8 |
7
|
orim1d |
|
| 9 |
5 8
|
mpd |
|
| 10 |
4 9
|
syl |
|
| 11 |
10
|
adantl |
|
| 12 |
|
oveq2 |
|
| 13 |
12 1
|
sylan9eqr |
|
| 14 |
13
|
ex |
|
| 15 |
14
|
ad2antrr |
|
| 16 |
|
eloni |
|
| 17 |
|
0elsuc |
|
| 18 |
16 17
|
syl |
|
| 19 |
18
|
adantl |
|
| 20 |
|
simpl |
|
| 21 |
19 20
|
eleqtrrd |
|
| 22 |
|
n0i |
|
| 23 |
21 22
|
syl |
|
| 24 |
23
|
pm2.21d |
|
| 25 |
24
|
adantl |
|
| 26 |
25
|
impancom |
|
| 27 |
|
nlim0 |
|
| 28 |
|
limeq |
|
| 29 |
27 28
|
mtbiri |
|
| 30 |
29
|
adantl |
|
| 31 |
30
|
pm2.21d |
|
| 32 |
15 26 31
|
3jca |
|
| 33 |
32
|
ex |
|
| 34 |
29
|
con2i |
|
| 35 |
34
|
adantl |
|
| 36 |
35
|
pm2.21d |
|
| 37 |
|
limeq |
|
| 38 |
37
|
notbid |
|
| 39 |
38
|
biimprd |
|
| 40 |
|
nlimsucg |
|
| 41 |
39 40
|
impel |
|
| 42 |
41
|
adantl |
|
| 43 |
42
|
pm2.21d |
|
| 44 |
43
|
impancom |
|
| 45 |
3
|
a1d |
|
| 46 |
36 44 45
|
3jca |
|
| 47 |
46
|
ex |
|
| 48 |
33 47
|
jaod |
|
| 49 |
|
1n0 |
|
| 50 |
|
necom |
|
| 51 |
|
df-1o |
|
| 52 |
|
uni0 |
|
| 53 |
|
suceq |
|
| 54 |
52 53
|
ax-mp |
|
| 55 |
51 54
|
eqtr4i |
|
| 56 |
55
|
neeq2i |
|
| 57 |
|
df-ne |
|
| 58 |
50 56 57
|
3bitri |
|
| 59 |
|
id |
|
| 60 |
|
unieq |
|
| 61 |
|
suceq |
|
| 62 |
60 61
|
syl |
|
| 63 |
59 62
|
eqeq12d |
|
| 64 |
63
|
notbid |
|
| 65 |
58 64
|
bitr4id |
|
| 66 |
49 65
|
mpbii |
|
| 67 |
66
|
con2i |
|
| 68 |
67
|
adantl |
|
| 69 |
68
|
pm2.21d |
|
| 70 |
|
simprl |
|
| 71 |
70
|
oveq2d |
|
| 72 |
2
|
adantrl |
|
| 73 |
71 72
|
eqtrd |
|
| 74 |
73
|
ex |
|
| 75 |
74
|
ad2antrr |
|
| 76 |
|
onuni |
|
| 77 |
|
nlimsucg |
|
| 78 |
76 77
|
syl |
|
| 79 |
|
limeq |
|
| 80 |
79
|
notbid |
|
| 81 |
80
|
biimprd |
|
| 82 |
78 81
|
mpan9 |
|
| 83 |
82
|
adantll |
|
| 84 |
83
|
pm2.21d |
|
| 85 |
69 75 84
|
3jca |
|
| 86 |
85
|
ex |
|
| 87 |
48 86
|
jaod |
|
| 88 |
11 87
|
mpd |
|