Description: Condition when the supremum of a class of ordinals is not the maximum element of that class. (Contributed by RP, 27-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | onsupeqnmax | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl | |
|
2 | 1 | sselda | |
3 | ssel2 | |
|
4 | 3 | adantr | |
5 | ontri1 | |
|
6 | 2 4 5 | syl2anc | |
7 | 6 | ralbidva | |
8 | 7 | rexbidva | |
9 | 8 | notbid | |
10 | 9 | bicomd | |
11 | dfrex2 | |
|
12 | 11 | ralbii | |
13 | ralnex | |
|
14 | 12 13 | bitri | |
15 | unielid | |
|
16 | 15 | notbii | |
17 | 10 14 16 | 3bitr4g | |
18 | onsupnmax | |
|
19 | 18 | pm4.71rd | |
20 | 17 19 | bitrd | |