Metamath Proof Explorer


Theorem onsupeqnmax

Description: Condition when the supremum of a class of ordinals is not the maximum element of that class. (Contributed by RP, 27-Jan-2025)

Ref Expression
Assertion onsupeqnmax AOnxAyAxyA=A¬AA

Proof

Step Hyp Ref Expression
1 simpl AOnxAAOn
2 1 sselda AOnxAyAyOn
3 ssel2 AOnxAxOn
4 3 adantr AOnxAyAxOn
5 ontri1 yOnxOnyx¬xy
6 2 4 5 syl2anc AOnxAyAyx¬xy
7 6 ralbidva AOnxAyAyxyA¬xy
8 7 rexbidva AOnxAyAyxxAyA¬xy
9 8 notbid AOn¬xAyAyx¬xAyA¬xy
10 9 bicomd AOn¬xAyA¬xy¬xAyAyx
11 dfrex2 yAxy¬yA¬xy
12 11 ralbii xAyAxyxA¬yA¬xy
13 ralnex xA¬yA¬xy¬xAyA¬xy
14 12 13 bitri xAyAxy¬xAyA¬xy
15 unielid AAxAyAyx
16 15 notbii ¬AA¬xAyAyx
17 10 14 16 3bitr4g AOnxAyAxy¬AA
18 onsupnmax AOn¬AAA=A
19 18 pm4.71rd AOn¬AAA=A¬AA
20 17 19 bitrd AOnxAyAxyA=A¬AA