Metamath Proof Explorer


Theorem opabex3d

Description: Existence of an ordered pair abstraction, deduction version. (Contributed by Alexander van der Vekens, 19-Oct-2017) (Revised by AV, 9-Aug-2024)

Ref Expression
Hypotheses opabex3d.1 φAV
opabex3d.2 φxAy|ψV
Assertion opabex3d φxy|xAψV

Proof

Step Hyp Ref Expression
1 opabex3d.1 φAV
2 opabex3d.2 φxAy|ψV
3 19.42v yxAz=xyψxAyz=xyψ
4 an12 z=xyxAψxAz=xyψ
5 4 exbii yz=xyxAψyxAz=xyψ
6 elxp zx×y|ψvwz=vwvxwy|ψ
7 excom vwz=vwvxwy|ψwvz=vwvxwy|ψ
8 an12 z=vwvxwy|ψvxz=vwwy|ψ
9 velsn vxv=x
10 9 anbi1i vxz=vwwy|ψv=xz=vwwy|ψ
11 8 10 bitri z=vwvxwy|ψv=xz=vwwy|ψ
12 11 exbii vz=vwvxwy|ψvv=xz=vwwy|ψ
13 opeq1 v=xvw=xw
14 13 eqeq2d v=xz=vwz=xw
15 14 anbi1d v=xz=vwwy|ψz=xwwy|ψ
16 15 equsexvw vv=xz=vwwy|ψz=xwwy|ψ
17 12 16 bitri vz=vwvxwy|ψz=xwwy|ψ
18 17 exbii wvz=vwvxwy|ψwz=xwwy|ψ
19 7 18 bitri vwz=vwvxwy|ψwz=xwwy|ψ
20 nfv yz=xw
21 nfsab1 ywy|ψ
22 20 21 nfan yz=xwwy|ψ
23 nfv wz=xyψ
24 opeq2 w=yxw=xy
25 24 eqeq2d w=yz=xwz=xy
26 df-clab wy|ψwyψ
27 sbequ12 y=wψwyψ
28 27 equcoms w=yψwyψ
29 26 28 bitr4id w=ywy|ψψ
30 25 29 anbi12d w=yz=xwwy|ψz=xyψ
31 22 23 30 cbvexv1 wz=xwwy|ψyz=xyψ
32 6 19 31 3bitri zx×y|ψyz=xyψ
33 32 anbi2i xAzx×y|ψxAyz=xyψ
34 3 5 33 3bitr4ri xAzx×y|ψyz=xyxAψ
35 34 exbii xxAzx×y|ψxyz=xyxAψ
36 eliun zxAx×y|ψxAzx×y|ψ
37 df-rex xAzx×y|ψxxAzx×y|ψ
38 36 37 bitri zxAx×y|ψxxAzx×y|ψ
39 elopab zxy|xAψxyz=xyxAψ
40 35 38 39 3bitr4i zxAx×y|ψzxy|xAψ
41 40 eqriv xAx×y|ψ=xy|xAψ
42 vsnex xV
43 xpexg xVy|ψVx×y|ψV
44 42 2 43 sylancr φxAx×y|ψV
45 44 ralrimiva φxAx×y|ψV
46 iunexg AVxAx×y|ψVxAx×y|ψV
47 1 45 46 syl2anc φxAx×y|ψV
48 41 47 eqeltrrid φxy|xAψV