Metamath Proof Explorer


Theorem opelopabsb

Description: The law of concretion in terms of substitutions. (Contributed by NM, 30-Sep-2002) (Revised by Mario Carneiro, 18-Nov-2016)

Ref Expression
Assertion opelopabsb ABxy|φ[˙A/x]˙[˙B/y]˙φ

Proof

Step Hyp Ref Expression
1 vex xV
2 vex yV
3 1 2 opnzi xy
4 simpl =xyφ=xy
5 4 eqcomd =xyφxy=
6 5 necon3ai xy¬=xyφ
7 3 6 ax-mp ¬=xyφ
8 7 nex ¬y=xyφ
9 8 nex ¬xy=xyφ
10 elopab xy|φxy=xyφ
11 9 10 mtbir ¬xy|φ
12 eleq1 AB=ABxy|φxy|φ
13 11 12 mtbiri AB=¬ABxy|φ
14 13 necon2ai ABxy|φAB
15 opnz ABAVBV
16 14 15 sylib ABxy|φAVBV
17 sbcex [˙A/x]˙[˙B/y]˙φAV
18 spesbc [˙A/x]˙[˙B/y]˙φx[˙B/y]˙φ
19 sbcex [˙B/y]˙φBV
20 19 exlimiv x[˙B/y]˙φBV
21 18 20 syl [˙A/x]˙[˙B/y]˙φBV
22 17 21 jca [˙A/x]˙[˙B/y]˙φAVBV
23 opeq1 z=Azw=Aw
24 23 eleq1d z=Azwxy|φAwxy|φ
25 dfsbcq2 z=Azxwyφ[˙A/x]˙wyφ
26 24 25 bibi12d z=Azwxy|φzxwyφAwxy|φ[˙A/x]˙wyφ
27 opeq2 w=BAw=AB
28 27 eleq1d w=BAwxy|φABxy|φ
29 dfsbcq2 w=Bwyφ[˙B/y]˙φ
30 29 sbcbidv w=B[˙A/x]˙wyφ[˙A/x]˙[˙B/y]˙φ
31 28 30 bibi12d w=BAwxy|φ[˙A/x]˙wyφABxy|φ[˙A/x]˙[˙B/y]˙φ
32 vopelopabsb zwxy|φzxwyφ
33 26 31 32 vtocl2g AVBVABxy|φ[˙A/x]˙[˙B/y]˙φ
34 16 22 33 pm5.21nii ABxy|φ[˙A/x]˙[˙B/y]˙φ