Metamath Proof Explorer


Theorem opeo

Description: The sum of an odd and an even is odd. (Contributed by Scott Fenton, 7-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion opeo A¬2AB2B¬2A+B

Proof

Step Hyp Ref Expression
1 odd2np1 A¬2Aa2a+1=A
2 2z 2
3 divides 2B2Bbb2=B
4 2 3 mpan B2Bbb2=B
5 1 4 bi2anan9 AB¬2A2Ba2a+1=Abb2=B
6 reeanv ab2a+1=Ab2=Ba2a+1=Abb2=B
7 zaddcl aba+b
8 zcn aa
9 zcn bb
10 2cn 2
11 adddi 2ab2a+b=2a+2b
12 10 11 mp3an1 ab2a+b=2a+2b
13 12 oveq1d ab2a+b+1=2a+2b+1
14 mulcl 2a2a
15 10 14 mpan a2a
16 mulcl 2b2b
17 10 16 mpan b2b
18 ax-1cn 1
19 add32 2a2b12a+2b+1=2a+1+2b
20 18 19 mp3an3 2a2b2a+2b+1=2a+1+2b
21 15 17 20 syl2an ab2a+2b+1=2a+1+2b
22 mulcom 2b2b=b2
23 10 22 mpan b2b=b2
24 23 adantl ab2b=b2
25 24 oveq2d ab2a+1+2b=2a+1+b2
26 13 21 25 3eqtrd ab2a+b+1=2a+1+b2
27 8 9 26 syl2an ab2a+b+1=2a+1+b2
28 oveq2 c=a+b2c=2a+b
29 28 oveq1d c=a+b2c+1=2a+b+1
30 29 eqeq1d c=a+b2c+1=2a+1+b22a+b+1=2a+1+b2
31 30 rspcev a+b2a+b+1=2a+1+b2c2c+1=2a+1+b2
32 7 27 31 syl2anc abc2c+1=2a+1+b2
33 oveq12 2a+1=Ab2=B2a+1+b2=A+B
34 33 eqeq2d 2a+1=Ab2=B2c+1=2a+1+b22c+1=A+B
35 34 rexbidv 2a+1=Ab2=Bc2c+1=2a+1+b2c2c+1=A+B
36 32 35 syl5ibcom ab2a+1=Ab2=Bc2c+1=A+B
37 36 rexlimivv ab2a+1=Ab2=Bc2c+1=A+B
38 6 37 sylbir a2a+1=Abb2=Bc2c+1=A+B
39 5 38 syl6bi AB¬2A2Bc2c+1=A+B
40 39 imp AB¬2A2Bc2c+1=A+B
41 40 an4s A¬2AB2Bc2c+1=A+B
42 zaddcl ABA+B
43 42 ad2ant2r A¬2AB2BA+B
44 odd2np1 A+B¬2A+Bc2c+1=A+B
45 43 44 syl A¬2AB2B¬2A+Bc2c+1=A+B
46 41 45 mpbird A¬2AB2B¬2A+B