Description: The sum of an odd and an even is odd. (Contributed by Scott Fenton, 7-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | opeo | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | odd2np1 | |
|
2 | 2z | |
|
3 | divides | |
|
4 | 2 3 | mpan | |
5 | 1 4 | bi2anan9 | |
6 | reeanv | |
|
7 | zaddcl | |
|
8 | zcn | |
|
9 | zcn | |
|
10 | 2cn | |
|
11 | adddi | |
|
12 | 10 11 | mp3an1 | |
13 | 12 | oveq1d | |
14 | mulcl | |
|
15 | 10 14 | mpan | |
16 | mulcl | |
|
17 | 10 16 | mpan | |
18 | ax-1cn | |
|
19 | add32 | |
|
20 | 18 19 | mp3an3 | |
21 | 15 17 20 | syl2an | |
22 | mulcom | |
|
23 | 10 22 | mpan | |
24 | 23 | adantl | |
25 | 24 | oveq2d | |
26 | 13 21 25 | 3eqtrd | |
27 | 8 9 26 | syl2an | |
28 | oveq2 | |
|
29 | 28 | oveq1d | |
30 | 29 | eqeq1d | |
31 | 30 | rspcev | |
32 | 7 27 31 | syl2anc | |
33 | oveq12 | |
|
34 | 33 | eqeq2d | |
35 | 34 | rexbidv | |
36 | 32 35 | syl5ibcom | |
37 | 36 | rexlimivv | |
38 | 6 37 | sylbir | |
39 | 5 38 | syl6bi | |
40 | 39 | imp | |
41 | 40 | an4s | |
42 | zaddcl | |
|
43 | 42 | ad2ant2r | |
44 | odd2np1 | |
|
45 | 43 44 | syl | |
46 | 41 45 | mpbird | |