Description: Any superset of an open set is a neighborhood of it. (Contributed by NM, 14-Feb-2007)
Ref | Expression | ||
---|---|---|---|
Hypothesis | neips.1 | |
|
Assertion | opnssneib | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neips.1 | |
|
2 | simplr | |
|
3 | sseq2 | |
|
4 | sseq1 | |
|
5 | 3 4 | anbi12d | |
6 | ssid | |
|
7 | 6 | biantrur | |
8 | 5 7 | bitr4di | |
9 | 8 | rspcev | |
10 | 9 | adantlr | |
11 | 2 10 | jca | |
12 | 11 | ex | |
13 | 12 | 3adant1 | |
14 | 1 | eltopss | |
15 | 1 | isnei | |
16 | 14 15 | syldan | |
17 | 16 | 3adant3 | |
18 | 13 17 | sylibrd | |
19 | ssnei | |
|
20 | 19 | ex | |
21 | 20 | 3ad2ant1 | |
22 | 18 21 | impbid | |