Metamath Proof Explorer


Theorem opnssneib

Description: Any superset of an open set is a neighborhood of it. (Contributed by NM, 14-Feb-2007)

Ref Expression
Hypothesis neips.1 X=J
Assertion opnssneib JTopSJNXSNNneiJS

Proof

Step Hyp Ref Expression
1 neips.1 X=J
2 simplr SJNXSNNX
3 sseq2 g=SSgSS
4 sseq1 g=SgNSN
5 3 4 anbi12d g=SSggNSSSN
6 ssid SS
7 6 biantrur SNSSSN
8 5 7 bitr4di g=SSggNSN
9 8 rspcev SJSNgJSggN
10 9 adantlr SJNXSNgJSggN
11 2 10 jca SJNXSNNXgJSggN
12 11 ex SJNXSNNXgJSggN
13 12 3adant1 JTopSJNXSNNXgJSggN
14 1 eltopss JTopSJSX
15 1 isnei JTopSXNneiJSNXgJSggN
16 14 15 syldan JTopSJNneiJSNXgJSggN
17 16 3adant3 JTopSJNXNneiJSNXgJSggN
18 13 17 sylibrd JTopSJNXSNNneiJS
19 ssnei JTopNneiJSSN
20 19 ex JTopNneiJSSN
21 20 3ad2ant1 JTopSJNXNneiJSSN
22 18 21 impbid JTopSJNXSNNneiJS