Description: If two categories have the same hom-sets and composition, so do their opposites. (Contributed by Mario Carneiro, 26-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | oppchomfpropd.1 | |
|
oppccomfpropd.1 | |
||
Assertion | oppccomfpropd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oppchomfpropd.1 | |
|
2 | oppccomfpropd.1 | |
|
3 | eqid | |
|
4 | eqid | |
|
5 | eqid | |
|
6 | eqid | |
|
7 | 1 | ad2antrr | |
8 | 2 | ad2antrr | |
9 | simplr3 | |
|
10 | simplr2 | |
|
11 | simplr1 | |
|
12 | simprr | |
|
13 | eqid | |
|
14 | 4 13 | oppchom | |
15 | 12 14 | eleqtrdi | |
16 | simprl | |
|
17 | 4 13 | oppchom | |
18 | 16 17 | eleqtrdi | |
19 | 3 4 5 6 7 8 9 10 11 15 18 | comfeqval | |
20 | 3 5 13 11 10 9 | oppcco | |
21 | eqid | |
|
22 | eqid | |
|
23 | 1 | homfeqbas | |
24 | 23 | ad2antrr | |
25 | 11 24 | eleqtrd | |
26 | 10 24 | eleqtrd | |
27 | 9 24 | eleqtrd | |
28 | 21 6 22 25 26 27 | oppcco | |
29 | 19 20 28 | 3eqtr4d | |
30 | 29 | ralrimivva | |
31 | 30 | ralrimivvva | |
32 | eqid | |
|
33 | eqid | |
|
34 | eqid | |
|
35 | 13 3 | oppcbas | |
36 | 35 | a1i | |
37 | 22 21 | oppcbas | |
38 | 23 37 | eqtrdi | |
39 | 1 | oppchomfpropd | |
40 | 32 33 34 36 38 39 | comfeq | |
41 | 31 40 | mpbird | |