Metamath Proof Explorer


Theorem oppccomfpropd

Description: If two categories have the same hom-sets and composition, so do their opposites. (Contributed by Mario Carneiro, 26-Jan-2017)

Ref Expression
Hypotheses oppchomfpropd.1 φHom𝑓C=Hom𝑓D
oppccomfpropd.1 φcomp𝑓C=comp𝑓D
Assertion oppccomfpropd φcomp𝑓oppCatC=comp𝑓oppCatD

Proof

Step Hyp Ref Expression
1 oppchomfpropd.1 φHom𝑓C=Hom𝑓D
2 oppccomfpropd.1 φcomp𝑓C=comp𝑓D
3 eqid BaseC=BaseC
4 eqid HomC=HomC
5 eqid compC=compC
6 eqid compD=compD
7 1 ad2antrr φxBaseCyBaseCzBaseCfxHomoppCatCygyHomoppCatCzHom𝑓C=Hom𝑓D
8 2 ad2antrr φxBaseCyBaseCzBaseCfxHomoppCatCygyHomoppCatCzcomp𝑓C=comp𝑓D
9 simplr3 φxBaseCyBaseCzBaseCfxHomoppCatCygyHomoppCatCzzBaseC
10 simplr2 φxBaseCyBaseCzBaseCfxHomoppCatCygyHomoppCatCzyBaseC
11 simplr1 φxBaseCyBaseCzBaseCfxHomoppCatCygyHomoppCatCzxBaseC
12 simprr φxBaseCyBaseCzBaseCfxHomoppCatCygyHomoppCatCzgyHomoppCatCz
13 eqid oppCatC=oppCatC
14 4 13 oppchom yHomoppCatCz=zHomCy
15 12 14 eleqtrdi φxBaseCyBaseCzBaseCfxHomoppCatCygyHomoppCatCzgzHomCy
16 simprl φxBaseCyBaseCzBaseCfxHomoppCatCygyHomoppCatCzfxHomoppCatCy
17 4 13 oppchom xHomoppCatCy=yHomCx
18 16 17 eleqtrdi φxBaseCyBaseCzBaseCfxHomoppCatCygyHomoppCatCzfyHomCx
19 3 4 5 6 7 8 9 10 11 15 18 comfeqval φxBaseCyBaseCzBaseCfxHomoppCatCygyHomoppCatCzfzycompCxg=fzycompDxg
20 3 5 13 11 10 9 oppcco φxBaseCyBaseCzBaseCfxHomoppCatCygyHomoppCatCzgxycompoppCatCzf=fzycompCxg
21 eqid BaseD=BaseD
22 eqid oppCatD=oppCatD
23 1 homfeqbas φBaseC=BaseD
24 23 ad2antrr φxBaseCyBaseCzBaseCfxHomoppCatCygyHomoppCatCzBaseC=BaseD
25 11 24 eleqtrd φxBaseCyBaseCzBaseCfxHomoppCatCygyHomoppCatCzxBaseD
26 10 24 eleqtrd φxBaseCyBaseCzBaseCfxHomoppCatCygyHomoppCatCzyBaseD
27 9 24 eleqtrd φxBaseCyBaseCzBaseCfxHomoppCatCygyHomoppCatCzzBaseD
28 21 6 22 25 26 27 oppcco φxBaseCyBaseCzBaseCfxHomoppCatCygyHomoppCatCzgxycompoppCatDzf=fzycompDxg
29 19 20 28 3eqtr4d φxBaseCyBaseCzBaseCfxHomoppCatCygyHomoppCatCzgxycompoppCatCzf=gxycompoppCatDzf
30 29 ralrimivva φxBaseCyBaseCzBaseCfxHomoppCatCygyHomoppCatCzgxycompoppCatCzf=gxycompoppCatDzf
31 30 ralrimivvva φxBaseCyBaseCzBaseCfxHomoppCatCygyHomoppCatCzgxycompoppCatCzf=gxycompoppCatDzf
32 eqid compoppCatC=compoppCatC
33 eqid compoppCatD=compoppCatD
34 eqid HomoppCatC=HomoppCatC
35 13 3 oppcbas BaseC=BaseoppCatC
36 35 a1i φBaseC=BaseoppCatC
37 22 21 oppcbas BaseD=BaseoppCatD
38 23 37 eqtrdi φBaseC=BaseoppCatD
39 1 oppchomfpropd φHom𝑓oppCatC=Hom𝑓oppCatD
40 32 33 34 36 38 39 comfeq φcomp𝑓oppCatC=comp𝑓oppCatDxBaseCyBaseCzBaseCfxHomoppCatCygyHomoppCatCzgxycompoppCatCzf=gxycompoppCatDzf
41 31 40 mpbird φcomp𝑓oppCatC=comp𝑓oppCatD