| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oppcthinco.o |
|
| 2 |
|
oppcthinco.c |
|
| 3 |
|
oppcthinendc.b |
|
| 4 |
|
oppcthinendc.h |
|
| 5 |
|
oppcthinendc.1 |
|
| 6 |
|
eqid |
|
| 7 |
|
simplr1 |
|
| 8 |
|
simplr2 |
|
| 9 |
|
simplr3 |
|
| 10 |
3 6 1 7 8 9
|
oppcco |
|
| 11 |
|
simpll |
|
| 12 |
7 8
|
jca |
|
| 13 |
|
simprl |
|
| 14 |
13
|
ne0d |
|
| 15 |
5
|
necon1d |
|
| 16 |
15
|
imp |
|
| 17 |
11 12 14 16
|
syl21anc |
|
| 18 |
|
simprr |
|
| 19 |
18
|
ne0d |
|
| 20 |
|
neeq1 |
|
| 21 |
|
oveq1 |
|
| 22 |
21
|
eqeq1d |
|
| 23 |
20 22
|
imbi12d |
|
| 24 |
|
neeq2 |
|
| 25 |
|
oveq2 |
|
| 26 |
25
|
eqeq1d |
|
| 27 |
24 26
|
imbi12d |
|
| 28 |
5
|
anassrs |
|
| 29 |
28
|
ralrimiva |
|
| 30 |
29
|
adantlr |
|
| 31 |
|
simplr |
|
| 32 |
27 30 31
|
rspcdva |
|
| 33 |
32
|
ralrimiva |
|
| 34 |
11 9 33
|
syl2anc |
|
| 35 |
23 34 8
|
rspcdva |
|
| 36 |
35
|
necon1d |
|
| 37 |
19 36
|
mpd |
|
| 38 |
17 37
|
eqtrd |
|
| 39 |
38
|
equcomd |
|
| 40 |
39
|
opeq1d |
|
| 41 |
40 38
|
oveq12d |
|
| 42 |
17
|
oveq1d |
|
| 43 |
13 42
|
eleqtrd |
|
| 44 |
37
|
oveq2d |
|
| 45 |
18 44
|
eleqtrrd |
|
| 46 |
11 2
|
syl |
|
| 47 |
8 8 43 45 3 4 46
|
thincmo2 |
|
| 48 |
47
|
equcomd |
|
| 49 |
41 47 48
|
oveq123d |
|
| 50 |
10 49
|
eqtr2d |
|
| 51 |
50
|
ralrimivva |
|
| 52 |
51
|
ralrimivvva |
|
| 53 |
|
eqid |
|
| 54 |
3
|
a1i |
|
| 55 |
1 3
|
oppcbas |
|
| 56 |
55
|
a1i |
|
| 57 |
1 3 4 5
|
oppcendc |
|
| 58 |
6 53 4 54 56 57
|
comfeq |
|
| 59 |
52 58
|
mpbird |
|