Metamath Proof Explorer


Theorem ordtypelem4

Description: Lemma for ordtype . (Contributed by Mario Carneiro, 24-Jun-2015)

Ref Expression
Hypotheses ordtypelem.1 F=recsG
ordtypelem.2 C=wA|jranhjRw
ordtypelem.3 G=hVιvC|uC¬uRv
ordtypelem.5 T=xOn|tAzFxzRt
ordtypelem.6 O=OrdIsoRA
ordtypelem.7 φRWeA
ordtypelem.8 φRSeA
Assertion ordtypelem4 φO:TdomFA

Proof

Step Hyp Ref Expression
1 ordtypelem.1 F=recsG
2 ordtypelem.2 C=wA|jranhjRw
3 ordtypelem.3 G=hVιvC|uC¬uRv
4 ordtypelem.5 T=xOn|tAzFxzRt
5 ordtypelem.6 O=OrdIsoRA
6 ordtypelem.7 φRWeA
7 ordtypelem.8 φRSeA
8 1 tfr1a FunFLimdomF
9 8 simpli FunF
10 funres FunFFunFT
11 9 10 mp1i φFunFT
12 11 funfnd φFTFndomFT
13 dmres domFT=TdomF
14 13 fneq2i FTFndomFTFTFnTdomF
15 12 14 sylib φFTFnTdomF
16 simpr φaTdomFaTdomF
17 16 elin1d φaTdomFaT
18 17 fvresd φaTdomFFTa=Fa
19 ssrab2 vwA|jFajRw|uwA|jFajRw¬uRvwA|jFajRw
20 ssrab2 wA|jFajRwA
21 19 20 sstri vwA|jFajRw|uwA|jFajRw¬uRvA
22 1 2 3 4 5 6 7 ordtypelem3 φaTdomFFavwA|jFajRw|uwA|jFajRw¬uRv
23 21 22 sselid φaTdomFFaA
24 18 23 eqeltrd φaTdomFFTaA
25 24 ralrimiva φaTdomFFTaA
26 ffnfv FT:TdomFAFTFnTdomFaTdomFFTaA
27 15 25 26 sylanbrc φFT:TdomFA
28 1 2 3 4 5 6 7 ordtypelem1 φO=FT
29 28 feq1d φO:TdomFAFT:TdomFA
30 27 29 mpbird φO:TdomFA