Metamath Proof Explorer


Theorem orvclteinc

Description: Preimage maps produced by the "less than or equal to" relation are increasing. (Contributed by Thierry Arnoux, 11-Feb-2017)

Ref Expression
Hypotheses dstfrv.1 φPProb
dstfrv.2 φXRndVarP
orvclteinc.1 φA
orvclteinc.2 φB
orvclteinc.3 φAB
Assertion orvclteinc φXRV/cAXRV/cB

Proof

Step Hyp Ref Expression
1 dstfrv.1 φPProb
2 dstfrv.2 φXRndVarP
3 orvclteinc.1 φA
4 orvclteinc.2 φB
5 orvclteinc.3 φAB
6 1 2 rrvf2 φX:domX
7 6 ffund φFunX
8 simp2 φxxAx
9 3 3ad2ant1 φxxAA
10 4 3ad2ant1 φxxAB
11 simp3 φxxAxA
12 5 3ad2ant1 φxxAAB
13 8 9 10 11 12 letrd φxxAxB
14 13 3expia φxxAxB
15 14 ss2rabdv φx|xAx|xB
16 sspreima FunXx|xAx|xBX-1x|xAX-1x|xB
17 7 15 16 syl2anc φX-1x|xAX-1x|xB
18 1 2 3 orrvcval4 φXRV/cA=X-1x|xA
19 1 2 4 orrvcval4 φXRV/cB=X-1x|xB
20 17 18 19 3sstr4d φXRV/cAXRV/cB