Description: Lemma for osumclN . (Contributed by NM, 25-Mar-2012) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | osumcl.p | |
|
osumcl.o | |
||
osumcl.c | |
||
Assertion | osumcllem11N | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | osumcl.p | |
|
2 | osumcl.o | |
|
3 | osumcl.c | |
|
4 | nonconne | |
|
5 | simpl1 | |
|
6 | simpl2 | |
|
7 | eqid | |
|
8 | 7 3 | psubclssatN | |
9 | 5 6 8 | syl2anc | |
10 | simpl3 | |
|
11 | 7 3 | psubclssatN | |
12 | 5 10 11 | syl2anc | |
13 | 7 1 | paddssat | |
14 | 5 9 12 13 | syl3anc | |
15 | 7 2 | 2polssN | |
16 | 5 14 15 | syl2anc | |
17 | df-pss | |
|
18 | pssnel | |
|
19 | 17 18 | sylbir | |
20 | df-rex | |
|
21 | 19 20 | sylibr | |
22 | eqid | |
|
23 | eqid | |
|
24 | eqid | |
|
25 | eqid | |
|
26 | 22 23 7 1 2 3 24 25 | osumcllem9N | |
27 | simp11 | |
|
28 | simp12 | |
|
29 | 27 28 8 | syl2anc | |
30 | simp13 | |
|
31 | 27 30 11 | syl2anc | |
32 | 14 | 3adantr3 | |
33 | 32 | 3adant3 | |
34 | 7 2 | polssatN | |
35 | 27 33 34 | syl2anc | |
36 | 7 2 | polssatN | |
37 | 27 35 36 | syl2anc | |
38 | simp23 | |
|
39 | 37 38 | sseldd | |
40 | simp3 | |
|
41 | 22 23 7 1 2 3 24 25 | osumcllem10N | |
42 | 27 29 31 39 40 41 | syl311anc | |
43 | 26 42 | pm2.21ddne | |
44 | 43 | 3exp | |
45 | 44 | 3expd | |
46 | 45 | imp32 | |
47 | 46 | rexlimdv | |
48 | 21 47 | syl5 | |
49 | 16 48 | mpand | |
50 | 49 | necon1bd | |
51 | 4 50 | mpi | |