Metamath Proof Explorer


Theorem osumcllem11N

Description: Lemma for osumclN . (Contributed by NM, 25-Mar-2012) (New usage is discouraged.)

Ref Expression
Hypotheses osumcl.p +˙=+𝑃K
osumcl.o ˙=𝑃K
osumcl.c C=PSubClK
Assertion osumcllem11N KHLXCYCX˙YXX+˙Y=˙˙X+˙Y

Proof

Step Hyp Ref Expression
1 osumcl.p +˙=+𝑃K
2 osumcl.o ˙=𝑃K
3 osumcl.c C=PSubClK
4 nonconne ¬X=XXX
5 simpl1 KHLXCYCX˙YXKHL
6 simpl2 KHLXCYCX˙YXXC
7 eqid AtomsK=AtomsK
8 7 3 psubclssatN KHLXCXAtomsK
9 5 6 8 syl2anc KHLXCYCX˙YXXAtomsK
10 simpl3 KHLXCYCX˙YXYC
11 7 3 psubclssatN KHLYCYAtomsK
12 5 10 11 syl2anc KHLXCYCX˙YXYAtomsK
13 7 1 paddssat KHLXAtomsKYAtomsKX+˙YAtomsK
14 5 9 12 13 syl3anc KHLXCYCX˙YXX+˙YAtomsK
15 7 2 2polssN KHLX+˙YAtomsKX+˙Y˙˙X+˙Y
16 5 14 15 syl2anc KHLXCYCX˙YXX+˙Y˙˙X+˙Y
17 df-pss X+˙Y˙˙X+˙YX+˙Y˙˙X+˙YX+˙Y˙˙X+˙Y
18 pssnel X+˙Y˙˙X+˙Ypp˙˙X+˙Y¬pX+˙Y
19 17 18 sylbir X+˙Y˙˙X+˙YX+˙Y˙˙X+˙Ypp˙˙X+˙Y¬pX+˙Y
20 df-rex p˙˙X+˙Y¬pX+˙Ypp˙˙X+˙Y¬pX+˙Y
21 19 20 sylibr X+˙Y˙˙X+˙YX+˙Y˙˙X+˙Yp˙˙X+˙Y¬pX+˙Y
22 eqid K=K
23 eqid joinK=joinK
24 eqid X+˙p=X+˙p
25 eqid ˙˙X+˙Y=˙˙X+˙Y
26 22 23 7 1 2 3 24 25 osumcllem9N KHLXCYCX˙YXp˙˙X+˙Y¬pX+˙YX+˙p=X
27 simp11 KHLXCYCX˙YXp˙˙X+˙Y¬pX+˙YKHL
28 simp12 KHLXCYCX˙YXp˙˙X+˙Y¬pX+˙YXC
29 27 28 8 syl2anc KHLXCYCX˙YXp˙˙X+˙Y¬pX+˙YXAtomsK
30 simp13 KHLXCYCX˙YXp˙˙X+˙Y¬pX+˙YYC
31 27 30 11 syl2anc KHLXCYCX˙YXp˙˙X+˙Y¬pX+˙YYAtomsK
32 14 3adantr3 KHLXCYCX˙YXp˙˙X+˙YX+˙YAtomsK
33 32 3adant3 KHLXCYCX˙YXp˙˙X+˙Y¬pX+˙YX+˙YAtomsK
34 7 2 polssatN KHLX+˙YAtomsK˙X+˙YAtomsK
35 27 33 34 syl2anc KHLXCYCX˙YXp˙˙X+˙Y¬pX+˙Y˙X+˙YAtomsK
36 7 2 polssatN KHL˙X+˙YAtomsK˙˙X+˙YAtomsK
37 27 35 36 syl2anc KHLXCYCX˙YXp˙˙X+˙Y¬pX+˙Y˙˙X+˙YAtomsK
38 simp23 KHLXCYCX˙YXp˙˙X+˙Y¬pX+˙Yp˙˙X+˙Y
39 37 38 sseldd KHLXCYCX˙YXp˙˙X+˙Y¬pX+˙YpAtomsK
40 simp3 KHLXCYCX˙YXp˙˙X+˙Y¬pX+˙Y¬pX+˙Y
41 22 23 7 1 2 3 24 25 osumcllem10N KHLXAtomsKYAtomsKpAtomsK¬pX+˙YX+˙pX
42 27 29 31 39 40 41 syl311anc KHLXCYCX˙YXp˙˙X+˙Y¬pX+˙YX+˙pX
43 26 42 pm2.21ddne KHLXCYCX˙YXp˙˙X+˙Y¬pX+˙YX=XXX
44 43 3exp KHLXCYCX˙YXp˙˙X+˙Y¬pX+˙YX=XXX
45 44 3expd KHLXCYCX˙YXp˙˙X+˙Y¬pX+˙YX=XXX
46 45 imp32 KHLXCYCX˙YXp˙˙X+˙Y¬pX+˙YX=XXX
47 46 rexlimdv KHLXCYCX˙YXp˙˙X+˙Y¬pX+˙YX=XXX
48 21 47 syl5 KHLXCYCX˙YXX+˙Y˙˙X+˙YX+˙Y˙˙X+˙YX=XXX
49 16 48 mpand KHLXCYCX˙YXX+˙Y˙˙X+˙YX=XXX
50 49 necon1bd KHLXCYCX˙YX¬X=XXXX+˙Y=˙˙X+˙Y
51 4 50 mpi KHLXCYCX˙YXX+˙Y=˙˙X+˙Y