| Step |
Hyp |
Ref |
Expression |
| 1 |
|
osumcllem.l |
|
| 2 |
|
osumcllem.j |
|
| 3 |
|
osumcllem.a |
|
| 4 |
|
osumcllem.p |
|
| 5 |
|
osumcllem.o |
|
| 6 |
|
osumcllem.c |
|
| 7 |
|
osumcllem.m |
|
| 8 |
|
osumcllem.u |
|
| 9 |
|
inass |
|
| 10 |
|
simp11 |
|
| 11 |
|
simp13 |
|
| 12 |
|
simp21 |
|
| 13 |
1 2 3 4 5 6 7 8
|
osumcllem3N |
|
| 14 |
10 11 12 13
|
syl3anc |
|
| 15 |
14
|
ineq1d |
|
| 16 |
9 15
|
eqtr3id |
|
| 17 |
|
simp12 |
|
| 18 |
3 6
|
psubclssatN |
|
| 19 |
10 17 18
|
syl2anc |
|
| 20 |
3 6
|
psubclssatN |
|
| 21 |
10 11 20
|
syl2anc |
|
| 22 |
|
simp22 |
|
| 23 |
3 4
|
paddssat |
|
| 24 |
10 19 21 23
|
syl3anc |
|
| 25 |
3 5
|
polssatN |
|
| 26 |
10 24 25
|
syl2anc |
|
| 27 |
3 5
|
polssatN |
|
| 28 |
10 26 27
|
syl2anc |
|
| 29 |
8 28
|
eqsstrid |
|
| 30 |
|
simp23 |
|
| 31 |
29 30
|
sseldd |
|
| 32 |
|
simp3 |
|
| 33 |
1 2 3 4 5 6 7 8
|
osumcllem8N |
|
| 34 |
10 19 21 12 22 31 32 33
|
syl331anc |
|
| 35 |
16 34
|
eqtrd |
|
| 36 |
35
|
fveq2d |
|
| 37 |
3 5
|
pol0N |
|
| 38 |
10 37
|
syl |
|
| 39 |
36 38
|
eqtrd |
|
| 40 |
1 2 3 4 5 6 7 8
|
osumcllem1N |
|
| 41 |
10 19 21 30 40
|
syl31anc |
|
| 42 |
39 41
|
ineq12d |
|
| 43 |
3 5 6
|
polsubclN |
|
| 44 |
10 26 43
|
syl2anc |
|
| 45 |
8 44
|
eqeltrid |
|
| 46 |
3 4 6
|
paddatclN |
|
| 47 |
10 17 31 46
|
syl3anc |
|
| 48 |
7 47
|
eqeltrid |
|
| 49 |
6
|
psubclinN |
|
| 50 |
10 45 48 49
|
syl3anc |
|
| 51 |
1 2 3 4 5 6 7 8
|
osumcllem2N |
|
| 52 |
10 19 21 30 51
|
syl31anc |
|
| 53 |
6 5
|
poml6N |
|
| 54 |
10 17 50 52 53
|
syl31anc |
|
| 55 |
31
|
snssd |
|
| 56 |
3 4
|
paddssat |
|
| 57 |
10 19 55 56
|
syl3anc |
|
| 58 |
7 57
|
eqsstrid |
|
| 59 |
|
sseqin2 |
|
| 60 |
58 59
|
sylib |
|
| 61 |
42 54 60
|
3eqtr3rd |
|