Step |
Hyp |
Ref |
Expression |
1 |
|
osumcllem.l |
|
2 |
|
osumcllem.j |
|
3 |
|
osumcllem.a |
|
4 |
|
osumcllem.p |
|
5 |
|
osumcllem.o |
|
6 |
|
osumcllem.c |
|
7 |
|
osumcllem.m |
|
8 |
|
osumcllem.u |
|
9 |
|
inass |
|
10 |
|
simp11 |
|
11 |
|
simp13 |
|
12 |
|
simp21 |
|
13 |
1 2 3 4 5 6 7 8
|
osumcllem3N |
|
14 |
10 11 12 13
|
syl3anc |
|
15 |
14
|
ineq1d |
|
16 |
9 15
|
eqtr3id |
|
17 |
|
simp12 |
|
18 |
3 6
|
psubclssatN |
|
19 |
10 17 18
|
syl2anc |
|
20 |
3 6
|
psubclssatN |
|
21 |
10 11 20
|
syl2anc |
|
22 |
|
simp22 |
|
23 |
3 4
|
paddssat |
|
24 |
10 19 21 23
|
syl3anc |
|
25 |
3 5
|
polssatN |
|
26 |
10 24 25
|
syl2anc |
|
27 |
3 5
|
polssatN |
|
28 |
10 26 27
|
syl2anc |
|
29 |
8 28
|
eqsstrid |
|
30 |
|
simp23 |
|
31 |
29 30
|
sseldd |
|
32 |
|
simp3 |
|
33 |
1 2 3 4 5 6 7 8
|
osumcllem8N |
|
34 |
10 19 21 12 22 31 32 33
|
syl331anc |
|
35 |
16 34
|
eqtrd |
|
36 |
35
|
fveq2d |
|
37 |
3 5
|
pol0N |
|
38 |
10 37
|
syl |
|
39 |
36 38
|
eqtrd |
|
40 |
1 2 3 4 5 6 7 8
|
osumcllem1N |
|
41 |
10 19 21 30 40
|
syl31anc |
|
42 |
39 41
|
ineq12d |
|
43 |
3 5 6
|
polsubclN |
|
44 |
10 26 43
|
syl2anc |
|
45 |
8 44
|
eqeltrid |
|
46 |
3 4 6
|
paddatclN |
|
47 |
10 17 31 46
|
syl3anc |
|
48 |
7 47
|
eqeltrid |
|
49 |
6
|
psubclinN |
|
50 |
10 45 48 49
|
syl3anc |
|
51 |
1 2 3 4 5 6 7 8
|
osumcllem2N |
|
52 |
10 19 21 30 51
|
syl31anc |
|
53 |
6 5
|
poml6N |
|
54 |
10 17 50 52 53
|
syl31anc |
|
55 |
31
|
snssd |
|
56 |
3 4
|
paddssat |
|
57 |
10 19 55 56
|
syl3anc |
|
58 |
7 57
|
eqsstrid |
|
59 |
|
sseqin2 |
|
60 |
58 59
|
sylib |
|
61 |
42 54 60
|
3eqtr3rd |
|