Description: The Lebesgue outer measure is a function that maps sets to nonnegative extended reals. This is step (a)(i) of the proof of Proposition 115D (a) of Fremlin1 p. 30. (Contributed by Glauco Siliprandi, 11-Oct-2020)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ovnf.1 | |
|
Assertion | ovnf | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovnf.1 | |
|
2 | 0e0iccpnf | |
|
3 | 2 | a1i | |
4 | 0xr | |
|
5 | 4 | a1i | |
6 | pnfxr | |
|
7 | 6 | a1i | |
8 | 1 | adantr | |
9 | elpwi | |
|
10 | 9 | adantl | |
11 | eqid | |
|
12 | 8 10 11 | ovnsupge0 | |
13 | 8 10 11 | ovnpnfelsup | |
14 | 13 | ne0d | |
15 | 5 7 12 14 | inficc | |
16 | 3 15 | ifcld | |
17 | eqid | |
|
18 | 16 17 | fmptd | |
19 | 1 | ovnval | |
20 | 19 | feq1d | |
21 | 18 20 | mpbird | |