Metamath Proof Explorer


Theorem ovnome

Description: ( voln*X ) is an outer measure on the space of multidimensional real numbers with dimension equal to the cardinality of the finite set X . Proposition 115D (a) of Fremlin1 p. 30 . (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypothesis ovnome.1 φXFin
Assertion ovnome φvoln*XOutMeas

Proof

Step Hyp Ref Expression
1 ovnome.1 φXFin
2 ovexd φXV
3 1 ovnf φvoln*X:𝒫X0+∞
4 1 ovn0 φvoln*X=0
5 1 3ad2ant1 φxXyxXFin
6 simp3 φxXyxyx
7 simp2 φxXyxxX
8 5 6 7 ovnssle φxXyxvoln*Xyvoln*Xx
9 1 adantr φa:𝒫XXFin
10 simpr φa:𝒫Xa:𝒫X
11 9 10 ovnsubadd φa:𝒫Xvoln*Xnansum^nvoln*Xan
12 2 3 4 8 11 isomennd φvoln*XOutMeas