Metamath Proof Explorer


Theorem ovolsf

Description: Closure for the partial sums of the interval length function. (Contributed by Mario Carneiro, 16-Mar-2014)

Ref Expression
Hypotheses ovolfs.1 G=absF
ovolfs.2 S=seq1+G
Assertion ovolsf F:2S:0+∞

Proof

Step Hyp Ref Expression
1 ovolfs.1 G=absF
2 ovolfs.2 S=seq1+G
3 nnuz =1
4 1zzd F:21
5 1 ovolfsf F:2G:0+∞
6 5 ffvelcdmda F:2xGx0+∞
7 ge0addcl x0+∞y0+∞x+y0+∞
8 7 adantl F:2x0+∞y0+∞x+y0+∞
9 3 4 6 8 seqf F:2seq1+G:0+∞
10 2 feq1i S:0+∞seq1+G:0+∞
11 9 10 sylibr F:2S:0+∞