Metamath Proof Explorer


Theorem ovolfsf

Description: Closure for the interval length function. (Contributed by Mario Carneiro, 16-Mar-2014)

Ref Expression
Hypothesis ovolfs.1 G=absF
Assertion ovolfsf F:2G:0+∞

Proof

Step Hyp Ref Expression
1 ovolfs.1 G=absF
2 absf abs:
3 subf :×
4 fco abs::×abs:×
5 2 3 4 mp2an abs:×
6 inss2 22
7 ax-resscn
8 xpss12 2×
9 7 7 8 mp2an 2×
10 6 9 sstri 2×
11 fss F:22×F:×
12 10 11 mpan2 F:2F:×
13 fco abs:×F:×absF:
14 5 12 13 sylancr F:2absF:
15 1 feq1i G:absF:
16 14 15 sylibr F:2G:
17 16 ffnd F:2GFn
18 16 ffvelcdmda F:2xGx
19 ovolfcl F:2x1stFx2ndFx1stFx2ndFx
20 subge0 2ndFx1stFx02ndFx1stFx1stFx2ndFx
21 20 ancoms 1stFx2ndFx02ndFx1stFx1stFx2ndFx
22 21 biimp3ar 1stFx2ndFx1stFx2ndFx02ndFx1stFx
23 19 22 syl F:2x02ndFx1stFx
24 1 ovolfsval F:2xGx=2ndFx1stFx
25 23 24 breqtrrd F:2x0Gx
26 elrege0 Gx0+∞Gx0Gx
27 18 25 26 sylanbrc F:2xGx0+∞
28 27 ralrimiva F:2xGx0+∞
29 ffnfv G:0+∞GFnxGx0+∞
30 17 28 29 sylanbrc F:2G:0+∞