Metamath Proof Explorer


Theorem oyoncl

Description: The opposite Yoneda embedding is a functor from oppCatC to the functor category C -> SetCat . (Contributed by Mario Carneiro, 26-Jan-2017)

Ref Expression
Hypotheses oyoncl.o O=oppCatC
oyoncl.y Y=YonO
oyoncl.c φCCat
oyoncl.s S=SetCatU
oyoncl.u φUV
oyoncl.h φranHom𝑓CU
oyoncl.q Q=CFuncCatS
Assertion oyoncl φYOFuncQ

Proof

Step Hyp Ref Expression
1 oyoncl.o O=oppCatC
2 oyoncl.y Y=YonO
3 oyoncl.c φCCat
4 oyoncl.s S=SetCatU
5 oyoncl.u φUV
6 oyoncl.h φranHom𝑓CU
7 oyoncl.q Q=CFuncCatS
8 1 oppccat CCatOCat
9 3 8 syl φOCat
10 eqid oppCatO=oppCatO
11 eqid oppCatOFuncCatS=oppCatOFuncCatS
12 eqid Hom𝑓C=Hom𝑓C
13 1 12 oppchomf tposHom𝑓C=Hom𝑓O
14 13 rneqi rantposHom𝑓C=ranHom𝑓O
15 relxp RelBaseC×BaseC
16 eqid BaseC=BaseC
17 12 16 homffn Hom𝑓CFnBaseC×BaseC
18 17 fndmi domHom𝑓C=BaseC×BaseC
19 18 releqi ReldomHom𝑓CRelBaseC×BaseC
20 15 19 mpbir ReldomHom𝑓C
21 rntpos ReldomHom𝑓CrantposHom𝑓C=ranHom𝑓C
22 20 21 ax-mp rantposHom𝑓C=ranHom𝑓C
23 14 22 eqtr3i ranHom𝑓O=ranHom𝑓C
24 23 6 eqsstrid φranHom𝑓OU
25 2 9 10 4 11 5 24 yoncl φYOFuncoppCatOFuncCatS
26 1 2oppchomf Hom𝑓C=Hom𝑓oppCatO
27 26 a1i φHom𝑓C=Hom𝑓oppCatO
28 1 2oppccomf comp𝑓C=comp𝑓oppCatO
29 28 a1i φcomp𝑓C=comp𝑓oppCatO
30 eqidd φHom𝑓S=Hom𝑓S
31 eqidd φcomp𝑓S=comp𝑓S
32 10 oppccat OCatoppCatOCat
33 9 32 syl φoppCatOCat
34 4 setccat UVSCat
35 5 34 syl φSCat
36 27 29 30 31 3 33 35 35 fucpropd φCFuncCatS=oppCatOFuncCatS
37 7 36 eqtrid φQ=oppCatOFuncCatS
38 37 oveq2d φOFuncQ=OFuncoppCatOFuncCatS
39 25 38 eleqtrrd φYOFuncQ