Description: The opposite Yoneda embedding is a functor from oppCatC to the functor category C -> SetCat . (Contributed by Mario Carneiro, 26-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | oyoncl.o | |
|
oyoncl.y | |
||
oyoncl.c | |
||
oyoncl.s | |
||
oyoncl.u | |
||
oyoncl.h | |
||
oyoncl.q | |
||
Assertion | oyoncl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oyoncl.o | |
|
2 | oyoncl.y | |
|
3 | oyoncl.c | |
|
4 | oyoncl.s | |
|
5 | oyoncl.u | |
|
6 | oyoncl.h | |
|
7 | oyoncl.q | |
|
8 | 1 | oppccat | |
9 | 3 8 | syl | |
10 | eqid | |
|
11 | eqid | |
|
12 | eqid | |
|
13 | 1 12 | oppchomf | |
14 | 13 | rneqi | |
15 | relxp | |
|
16 | eqid | |
|
17 | 12 16 | homffn | |
18 | 17 | fndmi | |
19 | 18 | releqi | |
20 | 15 19 | mpbir | |
21 | rntpos | |
|
22 | 20 21 | ax-mp | |
23 | 14 22 | eqtr3i | |
24 | 23 6 | eqsstrid | |
25 | 2 9 10 4 11 5 24 | yoncl | |
26 | 1 | 2oppchomf | |
27 | 26 | a1i | |
28 | 1 | 2oppccomf | |
29 | 28 | a1i | |
30 | eqidd | |
|
31 | eqidd | |
|
32 | 10 | oppccat | |
33 | 9 32 | syl | |
34 | 4 | setccat | |
35 | 5 34 | syl | |
36 | 27 29 30 31 3 33 35 35 | fucpropd | |
37 | 7 36 | eqtrid | |
38 | 37 | oveq2d | |
39 | 25 38 | eleqtrrd | |