| Step |
Hyp |
Ref |
Expression |
| 1 |
|
paddasslem.l |
|
| 2 |
|
paddasslem.j |
|
| 3 |
|
paddasslem.a |
|
| 4 |
|
breq1 |
|
| 5 |
4
|
biimpac |
|
| 6 |
|
eqid |
|
| 7 |
|
simpll1 |
|
| 8 |
7
|
hllatd |
|
| 9 |
|
simpll2 |
|
| 10 |
6 3
|
atbase |
|
| 11 |
9 10
|
syl |
|
| 12 |
|
simp32 |
|
| 13 |
12
|
ad2antrr |
|
| 14 |
6 3
|
atbase |
|
| 15 |
13 14
|
syl |
|
| 16 |
|
simp33 |
|
| 17 |
16
|
ad2antrr |
|
| 18 |
6 3
|
atbase |
|
| 19 |
17 18
|
syl |
|
| 20 |
6 2
|
latjcl |
|
| 21 |
8 15 19 20
|
syl3anc |
|
| 22 |
|
simp31 |
|
| 23 |
22
|
ad2antrr |
|
| 24 |
6 3
|
atbase |
|
| 25 |
23 24
|
syl |
|
| 26 |
6 2
|
latjcl |
|
| 27 |
8 25 15 26
|
syl3anc |
|
| 28 |
|
simplr |
|
| 29 |
1 2 3
|
hlatlej2 |
|
| 30 |
7 23 13 29
|
syl3anc |
|
| 31 |
|
simpr |
|
| 32 |
6 1 2
|
latjle12 |
|
| 33 |
32
|
biimpd |
|
| 34 |
8 15 19 27 33
|
syl13anc |
|
| 35 |
30 31 34
|
mp2and |
|
| 36 |
6 1 8 11 21 27 28 35
|
lattrd |
|
| 37 |
36
|
ex |
|
| 38 |
5 37
|
syl5 |
|
| 39 |
38
|
expdimp |
|
| 40 |
39
|
necon3bd |
|
| 41 |
40
|
exp31 |
|
| 42 |
41
|
com23 |
|
| 43 |
42
|
com24 |
|
| 44 |
43
|
3imp2 |
|