Description: Lemma for paddass . Show s =/= z by contradiction. (Contributed by NM, 8-Jan-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | paddasslem.l | |
|
paddasslem.j | |
||
paddasslem.a | |
||
Assertion | paddasslem5 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | paddasslem.l | |
|
2 | paddasslem.j | |
|
3 | paddasslem.a | |
|
4 | breq1 | |
|
5 | 4 | biimpac | |
6 | eqid | |
|
7 | simpll1 | |
|
8 | 7 | hllatd | |
9 | simpll2 | |
|
10 | 6 3 | atbase | |
11 | 9 10 | syl | |
12 | simp32 | |
|
13 | 12 | ad2antrr | |
14 | 6 3 | atbase | |
15 | 13 14 | syl | |
16 | simp33 | |
|
17 | 16 | ad2antrr | |
18 | 6 3 | atbase | |
19 | 17 18 | syl | |
20 | 6 2 | latjcl | |
21 | 8 15 19 20 | syl3anc | |
22 | simp31 | |
|
23 | 22 | ad2antrr | |
24 | 6 3 | atbase | |
25 | 23 24 | syl | |
26 | 6 2 | latjcl | |
27 | 8 25 15 26 | syl3anc | |
28 | simplr | |
|
29 | 1 2 3 | hlatlej2 | |
30 | 7 23 13 29 | syl3anc | |
31 | simpr | |
|
32 | 6 1 2 | latjle12 | |
33 | 32 | biimpd | |
34 | 8 15 19 27 33 | syl13anc | |
35 | 30 31 34 | mp2and | |
36 | 6 1 8 11 21 27 28 35 | lattrd | |
37 | 36 | ex | |
38 | 5 37 | syl5 | |
39 | 38 | expdimp | |
40 | 39 | necon3bd | |
41 | 40 | exp31 | |
42 | 41 | com23 | |
43 | 42 | com24 | |
44 | 43 | 3imp2 | |