Metamath Proof Explorer


Theorem paddcom

Description: Projective subspace sum commutes. (Contributed by NM, 3-Jan-2012)

Ref Expression
Hypotheses padd0.a A=AtomsK
padd0.p +˙=+𝑃K
Assertion paddcom KLatXAYAX+˙Y=Y+˙X

Proof

Step Hyp Ref Expression
1 padd0.a A=AtomsK
2 padd0.p +˙=+𝑃K
3 uncom XY=YX
4 3 a1i KLatXAYAXY=YX
5 simpl1 KLatXAYAqXrYKLat
6 simpl2 KLatXAYAqXrYXA
7 simprl KLatXAYAqXrYqX
8 6 7 sseldd KLatXAYAqXrYqA
9 eqid BaseK=BaseK
10 9 1 atbase qAqBaseK
11 8 10 syl KLatXAYAqXrYqBaseK
12 simpl3 KLatXAYAqXrYYA
13 simprr KLatXAYAqXrYrY
14 12 13 sseldd KLatXAYAqXrYrA
15 9 1 atbase rArBaseK
16 14 15 syl KLatXAYAqXrYrBaseK
17 eqid joinK=joinK
18 9 17 latjcom KLatqBaseKrBaseKqjoinKr=rjoinKq
19 5 11 16 18 syl3anc KLatXAYAqXrYqjoinKr=rjoinKq
20 19 breq2d KLatXAYAqXrYpKqjoinKrpKrjoinKq
21 20 2rexbidva KLatXAYAqXrYpKqjoinKrqXrYpKrjoinKq
22 rexcom qXrYpKrjoinKqrYqXpKrjoinKq
23 21 22 bitrdi KLatXAYAqXrYpKqjoinKrrYqXpKrjoinKq
24 23 rabbidv KLatXAYApA|qXrYpKqjoinKr=pA|rYqXpKrjoinKq
25 4 24 uneq12d KLatXAYAXYpA|qXrYpKqjoinKr=YXpA|rYqXpKrjoinKq
26 eqid K=K
27 26 17 1 2 paddval KLatXAYAX+˙Y=XYpA|qXrYpKqjoinKr
28 26 17 1 2 paddval KLatYAXAY+˙X=YXpA|rYqXpKrjoinKq
29 28 3com23 KLatXAYAY+˙X=YXpA|rYqXpKrjoinKq
30 25 27 29 3eqtr4d KLatXAYAX+˙Y=Y+˙X