Metamath Proof Explorer


Theorem pcdvdstr

Description: The prime count increases under the divisibility relation. (Contributed by Mario Carneiro, 13-Mar-2014)

Ref Expression
Assertion pcdvdstr PABABPpCntAPpCntB

Proof

Step Hyp Ref Expression
1 0z 0
2 zq 00
3 1 2 ax-mp 0
4 pcxcl P0PpCnt0*
5 3 4 mpan2 PPpCnt0*
6 5 xrleidd PPpCnt0PpCnt0
7 6 ad2antrr PABABA=0PpCnt0PpCnt0
8 simpr PABABA=0A=0
9 8 oveq2d PABABA=0PpCntA=PpCnt0
10 simplr3 PABABA=0AB
11 8 10 eqbrtrrd PABABA=00B
12 simplr2 PABABA=0B
13 0dvds B0BB=0
14 12 13 syl PABABA=00BB=0
15 11 14 mpbid PABABA=0B=0
16 15 oveq2d PABABA=0PpCntB=PpCnt0
17 7 9 16 3brtr4d PABABA=0PpCntAPpCntB
18 prmnn PP
19 18 ad2antrr PABABA0P
20 simpll PABABA0P
21 simplr1 PABABA0A
22 simpr PABABA0A0
23 pczcl PAA0PpCntA0
24 20 21 22 23 syl12anc PABABA0PpCntA0
25 19 24 nnexpcld PABABA0PPpCntA
26 25 nnzd PABABA0PPpCntA
27 simplr2 PABABA0B
28 pczdvds PAA0PPpCntAA
29 20 21 22 28 syl12anc PABABA0PPpCntAA
30 simplr3 PABABA0AB
31 26 21 27 29 30 dvdstrd PABABA0PPpCntAB
32 pcdvdsb PBPpCntA0PpCntAPpCntBPPpCntAB
33 20 27 24 32 syl3anc PABABA0PpCntAPpCntBPPpCntAB
34 31 33 mpbird PABABA0PpCntAPpCntB
35 17 34 pm2.61dane PABABPpCntAPpCntB