| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
|
| 2 |
1
|
oveq2d |
|
| 3 |
2
|
eqeq1d |
|
| 4 |
|
simpl1 |
|
| 5 |
|
simp2 |
|
| 6 |
5
|
adantr |
|
| 7 |
|
simpl3 |
|
| 8 |
|
simprr |
|
| 9 |
|
simpr |
|
| 10 |
9
|
necon3ai |
|
| 11 |
8 10
|
syl |
|
| 12 |
|
gcdn0cl |
|
| 13 |
6 7 11 12
|
syl21anc |
|
| 14 |
13
|
nnzd |
|
| 15 |
|
gcddvds |
|
| 16 |
6 7 15
|
syl2anc |
|
| 17 |
16
|
simpld |
|
| 18 |
|
pcdvdstr |
|
| 19 |
4 14 6 17 18
|
syl13anc |
|
| 20 |
|
zq |
|
| 21 |
6 20
|
syl |
|
| 22 |
|
pcxcl |
|
| 23 |
4 21 22
|
syl2anc |
|
| 24 |
|
pczcl |
|
| 25 |
4 7 8 24
|
syl12anc |
|
| 26 |
25
|
nn0red |
|
| 27 |
|
pcge0 |
|
| 28 |
4 6 27
|
syl2anc |
|
| 29 |
|
ge0gtmnf |
|
| 30 |
23 28 29
|
syl2anc |
|
| 31 |
|
simprl |
|
| 32 |
|
xrre |
|
| 33 |
23 26 30 31 32
|
syl22anc |
|
| 34 |
|
pnfnre |
|
| 35 |
34
|
neli |
|
| 36 |
|
pc0 |
|
| 37 |
4 36
|
syl |
|
| 38 |
37
|
eleq1d |
|
| 39 |
35 38
|
mtbiri |
|
| 40 |
|
oveq2 |
|
| 41 |
40
|
eleq1d |
|
| 42 |
41
|
notbid |
|
| 43 |
39 42
|
syl5ibrcom |
|
| 44 |
43
|
necon2ad |
|
| 45 |
33 44
|
mpd |
|
| 46 |
|
pczdvds |
|
| 47 |
4 6 45 46
|
syl12anc |
|
| 48 |
|
pczcl |
|
| 49 |
4 6 45 48
|
syl12anc |
|
| 50 |
|
pcdvdsb |
|
| 51 |
4 7 49 50
|
syl3anc |
|
| 52 |
31 51
|
mpbid |
|
| 53 |
|
prmnn |
|
| 54 |
4 53
|
syl |
|
| 55 |
54 49
|
nnexpcld |
|
| 56 |
55
|
nnzd |
|
| 57 |
|
dvdsgcd |
|
| 58 |
56 6 7 57
|
syl3anc |
|
| 59 |
47 52 58
|
mp2and |
|
| 60 |
|
pcdvdsb |
|
| 61 |
4 14 49 60
|
syl3anc |
|
| 62 |
59 61
|
mpbird |
|
| 63 |
4 13
|
pccld |
|
| 64 |
63
|
nn0red |
|
| 65 |
64 33
|
letri3d |
|
| 66 |
19 62 65
|
mpbir2and |
|
| 67 |
66
|
anassrs |
|
| 68 |
|
gcdid0 |
|
| 69 |
5 68
|
syl |
|
| 70 |
69
|
oveq2d |
|
| 71 |
|
pcabs |
|
| 72 |
20 71
|
sylan2 |
|
| 73 |
72
|
3adant3 |
|
| 74 |
70 73
|
eqtrd |
|
| 75 |
74
|
adantr |
|
| 76 |
3 67 75
|
pm2.61ne |
|